期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Aspect-Based Sentiment Analysis for Social Multimedia:A Hybrid Computational Framework 被引量:1
1
作者 Muhammad Rizwan Rashid Rana Saif Ur Rehman +4 位作者 Asif Nawaz Tariq Ali Azhar Imran Abdulkareem Alzahrani Abdullah Almuhaimeed 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2415-2428,共14页
People utilize microblogs and other social media platforms to express their thoughts and feelings regarding current events,public products and the latest affairs.People share their thoughts and feelings about various ... People utilize microblogs and other social media platforms to express their thoughts and feelings regarding current events,public products and the latest affairs.People share their thoughts and feelings about various topics,including products,news,blogs,etc.In user reviews and tweets,sentiment analysis is used to discover opinions and feelings.Sentiment polarity is a term used to describe how sentiment is represented.Positive,neutral and negative are all examples of it.This area is still in its infancy and needs several critical upgrades.Slang and hidden emotions can detract from the accuracy of traditional techniques.Existing methods only evaluate the polarity strength of the sentiment words when dividing them into positive and negative categories.Some existing strategies are domain-specific.The proposed model incorporates aspect extraction,association rule mining and the deep learning technique Bidirectional EncoderRepresentations from Transformers(BERT).Aspects are extracted using Part of Speech Tagger and association rulemining is used to associate aspects with opinion words.Later,classification was performed using BER.The proposed approach attained an average of 89.45%accuracy,88.45%precision and 85.98%recall on different datasets of products and Twitter.The results showed that the proposed technique achieved better than state-of-the-art sentiment analysis techniques. 展开更多
关键词 ASPECTS deep learning LEXICON sentiments REVIEWS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部