The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts....The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.展开更多
This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multidimensional vision identification technology adapted to the situation in large indoor and underground spaces.With th...This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multidimensional vision identification technology adapted to the situation in large indoor and underground spaces.With the expansion of large shopping malls and underground urban spaces(UUS),there is an increasing need for new technologies that can quickly identify complex indoor structures and changes such as relocation,remodeling,and construction for the safety and management of citizens through the provision of the up-to-date indoor 3D site maps.The proposed algorithm utilizes data collected by an unmanned robot to create a 3D site map of the up-to-date indoor site and recognizes complex indoor spaces based on zero-shot learning.This research specifically addresses two major challenges:the difficulty of detecting walls and floors due to complex patterns and the difficulty of spatial perception due to unknown obstacles.The proposed algorithm addresses the limitations of the existing foundation model,detects floors and obstacles without expensive sensors,and improves the accuracy of spatial recognition by combining floor detection,vanishing point detection,and fusion obstacle detection algorithms.The experimental results show that the algorithm effectively detects the floor and obstacles in various indoor environments,with F1 scores of 0.96 and 0.93 in the floor detection and obstacle detection experiments,respectively.展开更多
This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevale...This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.展开更多
The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threat...The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threats,necessitating robust IntrusionDetection Systems(IDS).Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems,especially when securing interconnected medical devices.This paper introduces SNN-IoMT(Stacked Neural Network Ensemble for IoMT Security),an AI-driven IDS framework designed to secure dynamic IoMT environments.Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron(MLP),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM),the model optimizes data management and integration while ensuring system scalability and interoperability.Trained on the WUSTL-EHMS-2020 and IoT-Healthcare-Security datasets,SNN-IoMT surpasses existing IDS frameworks in accuracy,precision,and detecting novel threats.By addressing the primary challenges in AI-driven healthcare systems,including privacy,reliability,and ethical data management,our approach exemplifies the importance of AI to enhance security and trust in IoMT-enabled healthcare.展开更多
In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial...In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach.展开更多
This research investigates the influence of indoor and outdoor factors on photovoltaic(PV)power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and i...This research investigates the influence of indoor and outdoor factors on photovoltaic(PV)power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency.To predict plant efficiency,nineteen variables are analyzed,consisting of nine indoor photovoltaic panel characteristics(Open Circuit Voltage(Voc),Short Circuit Current(Isc),Maximum Power(Pmpp),Maximum Voltage(Umpp),Maximum Current(Impp),Filling Factor(FF),Parallel Resistance(Rp),Series Resistance(Rs),Module Temperature)and ten environmental factors(Air Temperature,Air Humidity,Dew Point,Air Pressure,Irradiation,Irradiation Propagation,Wind Speed,Wind Speed Propagation,Wind Direction,Wind Direction Propagation).This study provides a new perspective not previously addressed in the literature.In this study,different machine learning methods such as Multilayer Perceptron(MLP),Multivariate Adaptive Regression Spline(MARS),Multiple Linear Regression(MLR),and Random Forest(RF)models are used to predict power values using data from installed PVpanels.Panel values obtained under real field conditions were used to train the models,and the results were compared.The Multilayer Perceptron(MLP)model was achieved with the highest classification accuracy of 0.990%.The machine learning models used for solar energy forecasting show high performance and produce results close to actual values.Models like Multi-Layer Perceptron(MLP)and Random Forest(RF)can be used in diverse locations based on load demand.展开更多
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at...Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.展开更多
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or...Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content.展开更多
Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo...Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.展开更多
The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from ...The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.展开更多
This paper studies the performance of Traffic Engineering (TE) signal protocols used for load balancing in Multi-Protocol Label Switching (MPLS) networks, namely;Constraint Based Routed Label Distribution Protocol LDP...This paper studies the performance of Traffic Engineering (TE) signal protocols used for load balancing in Multi-Protocol Label Switching (MPLS) networks, namely;Constraint Based Routed Label Distribution Protocol LDP (CR-LDP) and Resource Reservation Protocol (RSVP). Furthermore, the performance of an MPLS network uses these TE signal protocols is compared to that of a conventional Internet Protocol (IP) network. Different applications including voice, video, File Transfer Protocol (FTP) and Hyperlink Text Transfer Protocol (HTTP) are used for the performance evaluation. Simulation results show superior performance of the MPLS network with CR-LDP TE signal protocol in all tested applications.展开更多
We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and o...We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies.In the presence of strain,the values of transmission can be effectively adjusted by changing the strengths of the strain,while the transport angle basically keeps unchanged.When an extra on-site energy is simultaneously applied to the central scattering region,not only are the electrons of valleys K and K'separated into two distinct transmission lobes in opposite transverse directions,but the transport angles of two valleys can be significantly changed.Therefore,one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies,which can be exploited for graphene-based valleytronics devices.展开更多
Because of increased need to tissue and organ transplantation, tissue engineering (TE) researches have significantly increased in recent years in Iran. The present study explored briefly the advances in the TE approac...Because of increased need to tissue and organ transplantation, tissue engineering (TE) researches have significantly increased in recent years in Iran. The present study explored briefly the advances in the TE approaches in Iran. Through comprehensive search, we explored main TE components researches include cell, scaffold, growth factor and bioreactor conducted in Iran. The field of TE and regenerative medicine in Iran dates back to the early part of the 1990 decade and the advent of stem cell researches. During past two decades, Iran was one of leader in stem cell research in Middle East. The next major step in TE was application and fabrication of scaffolds for TE in the early 2000s with focused on engineering bone and nerve tissue. Iranian researchers extensively used natural scaffolds in their studies and hybridized natural polymers and inorganic scaffolds. There are many universities and government research institutes are conducting active research on tissue-engineering technologies. Limitations to TE in Iran include property design and validation of bioreactors. In conclusion, in the last few years, fields of tissue engineering and regenerative medicine such as stem cell technology and scaffolds have progressed in Iran, but one of the biggest challenges for TE is bioreactors researches.展开更多
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.展开更多
As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed...As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed of light propagation through thin optical layers.With sufficient degrees of freedom,D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light.Similarly,D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination;however,under spatially incoherent light,these transformations are nonnegative,acting on diffraction-limited optical intensity patterns at the input field of view.Here,we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light.Through simulations,we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products,a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.展开更多
Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV...Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV(system),P–L1,2,M1,2–L1,2,and q–Lratiowere revisited.The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 parallax.We reviewed previous studies on 2D relationships and updated six parameter relationships.Therefore,Markov chain Monte Carlo and Machine Learning methods were used,and the outcomes were compared.We selected 22 contact binary systems from eight previous studies for comparison,which had light curve solutions using spectroscopic data.The results show that the systems are in good agreement with the results of this study.展开更多
Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an induct...Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.展开更多
The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and th...The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.展开更多
Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference betwee...Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.展开更多
The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data gen...The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data generated by the IIo T,coupled with heterogeneous computation capacity across IIo T devices,and users’data privacy concerns,have posed challenges towards achieving industrial edge intelligence(IEI).To achieve IEI,in this paper,we propose a semi-federated learning framework where a portion of the data with higher privacy is kept locally and a portion of the less private data can be potentially uploaded to the edge server.In addition,we leverage digital twins to overcome the problem of computation capacity heterogeneity of IIo T devices through the mapping of physical entities.We formulate a synchronization latency minimization problem which jointly optimizes edge association and the proportion of uploaded nonprivate data.As the joint problem is NP-hard and combinatorial and taking into account the reality of largescale device training,we develop a multi-agent hybrid action deep reinforcement learning(DRL)algorithm to find the optimal solution.Simulation results show that our proposed DRL algorithm can reduce latency and have a better convergence performance for semi-federated learning compared to benchmark algorithms.展开更多
文摘The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.
基金supported by Kyonggi University Research Grant 2024.
文摘This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multidimensional vision identification technology adapted to the situation in large indoor and underground spaces.With the expansion of large shopping malls and underground urban spaces(UUS),there is an increasing need for new technologies that can quickly identify complex indoor structures and changes such as relocation,remodeling,and construction for the safety and management of citizens through the provision of the up-to-date indoor 3D site maps.The proposed algorithm utilizes data collected by an unmanned robot to create a 3D site map of the up-to-date indoor site and recognizes complex indoor spaces based on zero-shot learning.This research specifically addresses two major challenges:the difficulty of detecting walls and floors due to complex patterns and the difficulty of spatial perception due to unknown obstacles.The proposed algorithm addresses the limitations of the existing foundation model,detects floors and obstacles without expensive sensors,and improves the accuracy of spatial recognition by combining floor detection,vanishing point detection,and fusion obstacle detection algorithms.The experimental results show that the algorithm effectively detects the floor and obstacles in various indoor environments,with F1 scores of 0.96 and 0.93 in the floor detection and obstacle detection experiments,respectively.
基金Türkiye Bilimsel ve Teknolojik Arastırma Kurumu。
文摘This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.
文摘The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threats,necessitating robust IntrusionDetection Systems(IDS).Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems,especially when securing interconnected medical devices.This paper introduces SNN-IoMT(Stacked Neural Network Ensemble for IoMT Security),an AI-driven IDS framework designed to secure dynamic IoMT environments.Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron(MLP),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM),the model optimizes data management and integration while ensuring system scalability and interoperability.Trained on the WUSTL-EHMS-2020 and IoT-Healthcare-Security datasets,SNN-IoMT surpasses existing IDS frameworks in accuracy,precision,and detecting novel threats.By addressing the primary challenges in AI-driven healthcare systems,including privacy,reliability,and ethical data management,our approach exemplifies the importance of AI to enhance security and trust in IoMT-enabled healthcare.
文摘In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach.
文摘This research investigates the influence of indoor and outdoor factors on photovoltaic(PV)power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency.To predict plant efficiency,nineteen variables are analyzed,consisting of nine indoor photovoltaic panel characteristics(Open Circuit Voltage(Voc),Short Circuit Current(Isc),Maximum Power(Pmpp),Maximum Voltage(Umpp),Maximum Current(Impp),Filling Factor(FF),Parallel Resistance(Rp),Series Resistance(Rs),Module Temperature)and ten environmental factors(Air Temperature,Air Humidity,Dew Point,Air Pressure,Irradiation,Irradiation Propagation,Wind Speed,Wind Speed Propagation,Wind Direction,Wind Direction Propagation).This study provides a new perspective not previously addressed in the literature.In this study,different machine learning methods such as Multilayer Perceptron(MLP),Multivariate Adaptive Regression Spline(MARS),Multiple Linear Regression(MLR),and Random Forest(RF)models are used to predict power values using data from installed PVpanels.Panel values obtained under real field conditions were used to train the models,and the results were compared.The Multilayer Perceptron(MLP)model was achieved with the highest classification accuracy of 0.990%.The machine learning models used for solar energy forecasting show high performance and produce results close to actual values.Models like Multi-Layer Perceptron(MLP)and Random Forest(RF)can be used in diverse locations based on load demand.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)—Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2022-00156334)in part by Liaoning Province Nature Fund Project(2024-BSLH-214).
文摘Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.
基金funded by Scientific Research Deanship at University of Hail-Saudi Arabia through Project Number RG-23092.
文摘Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content.
基金supported by the Large Group Project under grant number(RGP2/473/46).
文摘Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.
文摘The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.
文摘This paper studies the performance of Traffic Engineering (TE) signal protocols used for load balancing in Multi-Protocol Label Switching (MPLS) networks, namely;Constraint Based Routed Label Distribution Protocol LDP (CR-LDP) and Resource Reservation Protocol (RSVP). Furthermore, the performance of an MPLS network uses these TE signal protocols is compared to that of a conventional Internet Protocol (IP) network. Different applications including voice, video, File Transfer Protocol (FTP) and Hyperlink Text Transfer Protocol (HTTP) are used for the performance evaluation. Simulation results show superior performance of the MPLS network with CR-LDP TE signal protocol in all tested applications.
基金National Natural Science Foundation of China(Grant No.11574067)。
文摘We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies.In the presence of strain,the values of transmission can be effectively adjusted by changing the strengths of the strain,while the transport angle basically keeps unchanged.When an extra on-site energy is simultaneously applied to the central scattering region,not only are the electrons of valleys K and K'separated into two distinct transmission lobes in opposite transverse directions,but the transport angles of two valleys can be significantly changed.Therefore,one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies,which can be exploited for graphene-based valleytronics devices.
文摘Because of increased need to tissue and organ transplantation, tissue engineering (TE) researches have significantly increased in recent years in Iran. The present study explored briefly the advances in the TE approaches in Iran. Through comprehensive search, we explored main TE components researches include cell, scaffold, growth factor and bioreactor conducted in Iran. The field of TE and regenerative medicine in Iran dates back to the early part of the 1990 decade and the advent of stem cell researches. During past two decades, Iran was one of leader in stem cell research in Middle East. The next major step in TE was application and fabrication of scaffolds for TE in the early 2000s with focused on engineering bone and nerve tissue. Iranian researchers extensively used natural scaffolds in their studies and hybridized natural polymers and inorganic scaffolds. There are many universities and government research institutes are conducting active research on tissue-engineering technologies. Limitations to TE in Iran include property design and validation of bioreactors. In conclusion, in the last few years, fields of tissue engineering and regenerative medicine such as stem cell technology and scaffolds have progressed in Iran, but one of the biggest challenges for TE is bioreactors researches.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
文摘In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
基金support of the U.S.Department of Energy (DOE),Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award#DE-SC0023088.
文摘As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed of light propagation through thin optical layers.With sufficient degrees of freedom,D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light.Similarly,D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination;however,under spatially incoherent light,these transformations are nonnegative,acting on diffraction-limited optical intensity patterns at the input field of view.Here,we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light.Through simulations,we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products,a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
基金The Binary Systems of South and North(BSN)project(https://bsnp.info/)。
文摘Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV(system),P–L1,2,M1,2–L1,2,and q–Lratiowere revisited.The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 parallax.We reviewed previous studies on 2D relationships and updated six parameter relationships.Therefore,Markov chain Monte Carlo and Machine Learning methods were used,and the outcomes were compared.We selected 22 contact binary systems from eight previous studies for comparison,which had light curve solutions using spectroscopic data.The results show that the systems are in good agreement with the results of this study.
文摘Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.
基金supported by the interdisciplinary center of smart mobility and logistics at King Fahd University of Petroleum and Minerals(Grant number INML2400).
文摘The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.
基金funded by Project Number INML2104 under the Interdisciplinary Center of Smart Mobility and Logistics at King Fahd University of Petroleum and Minerals.This study also was supported by the Special Research Fund BOF23KV17.
文摘Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515。
文摘The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data generated by the IIo T,coupled with heterogeneous computation capacity across IIo T devices,and users’data privacy concerns,have posed challenges towards achieving industrial edge intelligence(IEI).To achieve IEI,in this paper,we propose a semi-federated learning framework where a portion of the data with higher privacy is kept locally and a portion of the less private data can be potentially uploaded to the edge server.In addition,we leverage digital twins to overcome the problem of computation capacity heterogeneity of IIo T devices through the mapping of physical entities.We formulate a synchronization latency minimization problem which jointly optimizes edge association and the proportion of uploaded nonprivate data.As the joint problem is NP-hard and combinatorial and taking into account the reality of largescale device training,we develop a multi-agent hybrid action deep reinforcement learning(DRL)algorithm to find the optimal solution.Simulation results show that our proposed DRL algorithm can reduce latency and have a better convergence performance for semi-federated learning compared to benchmark algorithms.