期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Prediction of rock fracture pressure in hydraulic fracturing with interpretable machine learning and mechanical specific energy theory
1
作者 Xiaoying Zhuang Yuhang Liu +2 位作者 Yuwen Hu Hongwei Guo Binh Huy Nguyen 《Rock Mechanics Bulletin》 2025年第2期68-72,共5页
Hydraulic fracturing stimulation technology is essential in the oil and gas industry.However,current techniques for predicting rock fracture pressure in hydraulic fracturing face significant challenges in precision an... Hydraulic fracturing stimulation technology is essential in the oil and gas industry.However,current techniques for predicting rock fracture pressure in hydraulic fracturing face significant challenges in precision and reliability.Traditional approaches often result in inadequate accuracy due to the complex and diverse nature of underground formations.However,recent advances in computational power and optimization techniques have enabled the application of machine learning in mining operations,resulting in improved prediction and feedback.In this study,various machine learning techniques are employed to predict hydraulic fracturing pressure based on the concept of mechanical specific energy.Additionally,the study interprets the models through feature importance analysis.Thefindings suggest that most machine learning models deliver highly accurate predictions.Feature importance analysis indicates that for an approximate assessment of fracture pressure,the characteristics of well depth and torque are sufficient.For more precise predictions,incorporating additional characteristics from the mechanical specific energy framework into the machine learning model is essential.The study emphasizes the feasibility of employing machine learning methods to predict fracture pressure and their usefulness in determining optimal engineering sites. 展开更多
关键词 Hydraulic fracturing Mechanical specific energy Nonlinear regression Interpretable machine learning Fracture pressure
在线阅读 下载PDF
Enhance liquid nitrogen fracturing performance on hot dry rock by cyclic injection 被引量:2
2
作者 Chun-Yang Hong Rui-Yue Yang +3 位作者 Zhong-Wei Huang Xiao-Ying Zhuang Hai-Tao Wen Xiao-Li Hu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期951-972,共22页
Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown press... Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs. 展开更多
关键词 Hot dry rock Liquid nitrogen fracturing Cyclic injection Thermal stress Fatigue damage
原文传递
A Systematic Molecular Dynamics Investigation on the Graphene Polymer Nanocomposites for Bulletproofing 被引量:2
3
作者 Hamidreza Noori Zi Goangseup +5 位作者 Bohayra Mortazavi Alessandro Di Pierro Emad Jomehzadeh Xiaoying Zhuang Kim Sang-Hyun Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2020年第12期2009-2032,共24页
In modern physics and fabrication technology,simulation of projectile and target collision is vital to improve design in some critical applications,like;bulletproofing and medical applications.Graphene,the most promin... In modern physics and fabrication technology,simulation of projectile and target collision is vital to improve design in some critical applications,like;bulletproofing and medical applications.Graphene,the most prominent member of two dimensional materials presents ultrahigh tensile strength and stiffness.Moreover,polydimethylsiloxane(PDMS)is one of the most important elastomeric materials with a high extensive application area,ranging from medical,fabric,and interface material.In this work we considered graphene/PDMS structures to explore the bullet resistance of resulting nanocomposites.To this aim,extensive molecular dynamic simulations were carried out to identify the penetration of bullet through the graphene and PDMS composite structures.In this paper,we simulate the impact of a diamond bullet with different velocities on the composites made of single-or bi-layer graphene placed in different positions of PDMS polymers.The underlying mechanism concerning how the PDMS improves the resistance of graphene against impact loading is discussed.We discuss that with the same content of graphene,placing the graphene in between the PDMS result in enhanced bullet resistance.This work comparatively examines the enhancement in design of polymer nanocomposites to improve their bulletproofing response and the obtained results may serve as valuable guide for future experimental and theoretical studies. 展开更多
关键词 GRAPHENE NANOCOMPOSITES bulletproofing IMPACT PDMS
在线阅读 下载PDF
Soil liquefaction assessment by using hierarchical Gaussian Process model with integrated feature and instance based domain adaption for multiple data sources 被引量:1
4
作者 Hongwei Guo Timon Rabczuk +3 位作者 Yanfei Zhu Hanyin Cui Chang Su Xiaoying Zhuang 《AI in Civil Engineering》 2022年第1期50-81,共32页
For soil liquefaction prediction from multiple data sources,this study designs a hierarchical machine learning model based on deep feature extraction and Gaussian Process with integrated domain adaption techniques.The... For soil liquefaction prediction from multiple data sources,this study designs a hierarchical machine learning model based on deep feature extraction and Gaussian Process with integrated domain adaption techniques.The proposed model first combines deep fisher discriminant analysis(DDA)and Gaussian Process(GP)in a unified framework,so as to extract deep discriminant features and enhance the model performance for classification.To deliver fair evalu-ation,the classifier is validated in the approach of repeated stratified K-fold cross validation.Then,five different data resources are presented to further verify the model’s robustness and generality.To reuse the gained knowledge from the existing data sources and enhance the generality of the predictive model,a domain adaption approach is formu-lated by combing a deep Autoencoder with TrAdaboost,to achieve good performance over different data records from both the in-situ and laboratory observations.After comparing the proposed model with classical machine learn-ing models,such as supported vector machine,as well as with the state-of-art ensemble learning models,it is found that,regarding seismic-induced liquefaction prediction,the predicted results of this model show high accuracy on all datasets both in the repeated cross validation and Wilcoxon signed rank test.Finally,a sensitivity analysis is made on the DDA-GP model to reveal the features that may significantly affect the liquefaction. 展开更多
关键词 LIQUEFACTION Machine learning Deep fisher discriminant analysis Gaussian Process Ensemble methods Domain adaption
原文传递
Surrounding rock classification from onsite images with deep transfer learning based on EfficientNet
5
作者 Xiaoying ZHUANG Wenjie FAN +2 位作者 Hongwei GUO Xuefeng CHEN Qimin WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第9期1311-1320,共10页
This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applie... This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applied to tunnel wall image recognition.Gaussian filtering,data augmentation and other data pre-processing techniques are used to improve the data quality and quantity.Combined with transfer learning,the generality,accuracy and efficiency of the deep learning(DL)model are further improved,and finally we achieve 89.96%accuracy.Compared with other state-of-the-art CNN architectures,such as ResNet and Inception-ResNet-V2(IRV2),the presented deep transfer learning model is more stable,accurate and efficient.To reveal the rock classification mechanism of the proposed model,Gradient-weight Class Activation Map(Grad-CAM)visualizations are integrated into the model to enable its explainability and accountability.The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou,China,with great results. 展开更多
关键词 surrounding rock classification convolutional neural network EfficientNet Gradient-weight Class Activation Map
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部