Elastic properties of platinum nitride (PtN) are studied by first-principles calculations with the fully relativistic full potential linearized augmented plane-wave (LAPW) method, the plane-wave ultrasoft pseudopo...Elastic properties of platinum nitride (PtN) are studied by first-principles calculations with the fully relativistic full potential linearized augmented plane-wave (LAPW) method, the plane-wave ultrasoft pseudopotential (PWPP) and the projector-augmented wave (PAW) methods. The results reveal that: (1) the scalar relativistic scheme is sufficient to treat the valence electronic structure, i.e. the spin-orbit effect has little effect on the bulk modulus value of platinum nitride; (2) the all-electron full potential method is no more accurate than the pseudopotential and PAW-based methods when calculating the lattice constant and bulk modulus properties of the platinum nitride; (3) platinum nitride in zinc-blende structure is unstable and its crystal structure is still an open problem.展开更多
基金Supported by tile National Natural Science Foundation of China under Grant Nos 10299041 and 50325103.
文摘Elastic properties of platinum nitride (PtN) are studied by first-principles calculations with the fully relativistic full potential linearized augmented plane-wave (LAPW) method, the plane-wave ultrasoft pseudopotential (PWPP) and the projector-augmented wave (PAW) methods. The results reveal that: (1) the scalar relativistic scheme is sufficient to treat the valence electronic structure, i.e. the spin-orbit effect has little effect on the bulk modulus value of platinum nitride; (2) the all-electron full potential method is no more accurate than the pseudopotential and PAW-based methods when calculating the lattice constant and bulk modulus properties of the platinum nitride; (3) platinum nitride in zinc-blende structure is unstable and its crystal structure is still an open problem.