We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existin...We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.展开更多
A metamaterial absorber is computed numerically and measured experimentally in a 150-THz^300-THz range.The measured absorber achieves high absorption rate for both transverse electric(TE) and transverse magnetic(TM...A metamaterial absorber is computed numerically and measured experimentally in a 150-THz^300-THz range.The measured absorber achieves high absorption rate for both transverse electric(TE) and transverse magnetic(TM) polarizations at large angles of incidence.An absorption sensor scheme is proposed based on the measured absorber and the variations of surrounding media.Different surrounding media are applied to the surface of the absorption sensor(including air,water,and glucose solution).Measured results show that high figure of merit(FOM) values are obtained for different surrounding media.The proposed sensor does not depend on the substrate,which means that it can be transplanted to different sensing platforms conveniently.展开更多
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi...We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predispositio...Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.展开更多
Aluminum industrial solid waste represents a highly abundant yet underutilized resource.Its incorporation into asphalt pavement applications can effectively reduce the exploitation of natural resources and mitigate en...Aluminum industrial solid waste represents a highly abundant yet underutilized resource.Its incorporation into asphalt pavement applications can effectively reduce the exploitation of natural resources and mitigate environmental issues caused by waste accumulation.This paper focuses on typical solid waste resources generated by the aluminum industry,summarizing the latest research progress in their application within the asphalt pavement industry and proposing key directions for future attention.The physicochemical properties of red mud(RM),spent aluminum electrolytic cathode materials,and secondary aluminum dross(SAD)are reviewed.The effects and mechanisms of RM,spent aluminum electrolytic cathode materials,and SAD on the performance of asphalt and its mixtures are elaborated.RM significantly enhances the aging resistance of asphalt,the hightemperature rheological properties of asphalt mastic,and the rutting resistance of asphalt mixtures.Spent aluminum electrolytic cathode materials require the removal of fluorides and cyanides before further application in asphalt pavement.SAD effectively improves the dynamic stability of asphalt mixtures.This review presents the first systematic summary of key scientific challenges and technical bottlenecks in the application of aluminum industrial solid waste in asphalt pavements.It clarifies that future research should prioritize waste pretreatment technologies,performance regulation mechanisms,and life cycle environmental impact assessments.These contributions provide essential theoretical foundations and technical guidance for advancing the resource utilization of aluminum industrial solid waste,holding substantial significance for promoting the development of green transportation infrastructure.展开更多
Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial ...Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes.展开更多
Exotic hadrons,beyond the conventional quark model,have been discovered over the past two decades.Investigating these states can lead to a deeper understanding of the nonperturbative dynamics of the strong interaction...Exotic hadrons,beyond the conventional quark model,have been discovered over the past two decades.Investigating these states can lead to a deeper understanding of the nonperturbative dynamics of the strong interaction.In this review,we focus on the production of exotic hadrons in pp,PP^(-),and nuclear collisions.Experimental observations of light and hypernuclei as prototypes of hadronic molecules in heavy-ion collisions are also briefly discussed.展开更多
With the rapid development of web technology,Social Networks(SNs)have become one of the most popular platforms for users to exchange views and to express their emotions.More and more people are used to commenting on a...With the rapid development of web technology,Social Networks(SNs)have become one of the most popular platforms for users to exchange views and to express their emotions.More and more people are used to commenting on a certain hot spot in SNs,resulting in a large amount of texts containing emotions.Textual Emotion Cause Extraction(TECE)aims to automatically extract causes for a certain emotion in texts,which is an important research issue in natural language processing.It is different from the previous tasks of emotion recognition and emotion classification.In addition,it is not limited to the shallow-level emotion classification of text,but to trace the emotion source.In this paper,we provide a survey for TECE.First,we introduce the development process and classification of TECE.Then,we discuss the existing methods and key factors for TECE.Finally,we enumerate the challenges and developing trend for TECE.展开更多
基金supported by the Major State Basic Research Program of China (973 project No. 2013CB329301 and 2010CB327806)the Natural Science Fund of China (NSFC project No. 61372085, 61032003, 61271165 and 61202379)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (RFDP project No. 20120185110025, 20120185110030 and 20120032120041)supported by Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
文摘We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11547196)the Key Projects of Sichuan Provincial Department of Education,China(Grant No.15ZA0224)+1 种基金the Project of Sichuan Provincial Key Laboratory of Artificial Intelligence,China(Grant No.2014RYJ01)the Key Plan Projects of Science and Technology of Zigong,China(Grant No.2016CXM05)
文摘A metamaterial absorber is computed numerically and measured experimentally in a 150-THz^300-THz range.The measured absorber achieves high absorption rate for both transverse electric(TE) and transverse magnetic(TM) polarizations at large angles of incidence.An absorption sensor scheme is proposed based on the measured absorber and the variations of surrounding media.Different surrounding media are applied to the surface of the absorption sensor(including air,water,and glucose solution).Measured results show that high figure of merit(FOM) values are obtained for different surrounding media.The proposed sensor does not depend on the substrate,which means that it can be transplanted to different sensing platforms conveniently.
基金Open Access funding enabled and organized by Projekt DEAL.
文摘We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.
基金funded by the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.
基金supported by the National Natural Science Foundation of China(No.52368058)Guangxi Science and Technology Program(Gui Ke AB23026067).
文摘Aluminum industrial solid waste represents a highly abundant yet underutilized resource.Its incorporation into asphalt pavement applications can effectively reduce the exploitation of natural resources and mitigate environmental issues caused by waste accumulation.This paper focuses on typical solid waste resources generated by the aluminum industry,summarizing the latest research progress in their application within the asphalt pavement industry and proposing key directions for future attention.The physicochemical properties of red mud(RM),spent aluminum electrolytic cathode materials,and secondary aluminum dross(SAD)are reviewed.The effects and mechanisms of RM,spent aluminum electrolytic cathode materials,and SAD on the performance of asphalt and its mixtures are elaborated.RM significantly enhances the aging resistance of asphalt,the hightemperature rheological properties of asphalt mastic,and the rutting resistance of asphalt mixtures.Spent aluminum electrolytic cathode materials require the removal of fluorides and cyanides before further application in asphalt pavement.SAD effectively improves the dynamic stability of asphalt mixtures.This review presents the first systematic summary of key scientific challenges and technical bottlenecks in the application of aluminum industrial solid waste in asphalt pavements.It clarifies that future research should prioritize waste pretreatment technologies,performance regulation mechanisms,and life cycle environmental impact assessments.These contributions provide essential theoretical foundations and technical guidance for advancing the resource utilization of aluminum industrial solid waste,holding substantial significance for promoting the development of green transportation infrastructure.
基金National Natural Science Foundation of China (No.52202046)Natural Science Foundation of Shaanxi Province (No.2021JQ-034)。
文摘Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes.
基金supported in part by the National Key Research and Development Program of China(Nos.2022YFA1604900,2023YFA1606703,2024YFA1610503)the National Natural Science Foundation of China(Nos.12025501,12147101,12375073,12125507,12361141819,12047503,12175239,12221005)the Chinese Academy of Sciences(Nos.XDB34000000 and YSBR-101)。
文摘Exotic hadrons,beyond the conventional quark model,have been discovered over the past two decades.Investigating these states can lead to a deeper understanding of the nonperturbative dynamics of the strong interaction.In this review,we focus on the production of exotic hadrons in pp,PP^(-),and nuclear collisions.Experimental observations of light and hypernuclei as prototypes of hadronic molecules in heavy-ion collisions are also briefly discussed.
基金partially supported by the National Natural Science Foundation of China under Grant No.62372121the Ministry of education of Humanities and Social Science project under Grant No.20YJAZH118+1 种基金the National Key Research and Development Program of China under Grant No.2020YFB1005804the MOE Project at Center for Linguistics and Applied Linguistics,Guangdong University of Foreign Studies。
文摘With the rapid development of web technology,Social Networks(SNs)have become one of the most popular platforms for users to exchange views and to express their emotions.More and more people are used to commenting on a certain hot spot in SNs,resulting in a large amount of texts containing emotions.Textual Emotion Cause Extraction(TECE)aims to automatically extract causes for a certain emotion in texts,which is an important research issue in natural language processing.It is different from the previous tasks of emotion recognition and emotion classification.In addition,it is not limited to the shallow-level emotion classification of text,but to trace the emotion source.In this paper,we provide a survey for TECE.First,we introduce the development process and classification of TECE.Then,we discuss the existing methods and key factors for TECE.Finally,we enumerate the challenges and developing trend for TECE.
基金supported by the National Natural Science Foundation of China(21503076)Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China(Xiang Jiao Tong[2012]318)~~
基金supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China(Xiang Tong Jiao[2012]318)Hunan Provincial Natural Science Foundation,China(12JJ2029)+2 种基金Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China(12K030)Scientific Research Fund of Changde Municipal Science and Technology Bureau,Hunan Province,China(2014JF15)Provincial Science and Technology Project,China(2013FJ4220)~~
基金supported by the‘XiaoXiang Scholar’Talents Foundation of Hunan Normal University,China (23040609)Hunan Provincial Innovation Foundation for Postgraduate,China (CX2012B223)+1 种基金Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,ChinaThe Hundred Talents Foundation of Hunan Province is gratefully acknowledged for the financial support to S. J. and S. R. K.~~
基金‘XiaoXiang Scholar’Talents Foundation of Hunan Normal University,China(23040609)Hunan Provincial Innovation Foundation for Postgraduate,China(CX2012B223)Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China~~