A combined process of molten salt electro-deoxidation and vacuum hot-pressing sintering was proposed to prepare AlCrFeNiTi_(x) high-entropy alloy(HEA)-TiN ceramic coating composites on low-carbon steel surfaces,where ...A combined process of molten salt electro-deoxidation and vacuum hot-pressing sintering was proposed to prepare AlCrFeNiTi_(x) high-entropy alloy(HEA)-TiN ceramic coating composites on low-carbon steel surfaces,where nitrides were introduced from BN isolater between graphite mold and HEA powders.The effect of Ti content on the microstructure,ultimate tensile strength,hardness,and wear resistance of the composites was investigated,and the bonding mechanism was elucidated.Results demonstrate that the composites have excellent hardness and wear resistance.The hardness of composites is significantly increased with the increase in Ti content.The extremely high wear resistance is attributed to the extremely high melting point and high thermal hardness of TiN,which can effectively prevent oxidation deformation of the worn surface.展开更多
Fe_(3)Si and FeSi intermetallic compounds were prepared by CaCl_(2)-NaCl melt electrolysis at 800℃from the non-magnetic copper slag compound.The phase transition of the cathode particles with different electrolysis v...Fe_(3)Si and FeSi intermetallic compounds were prepared by CaCl_(2)-NaCl melt electrolysis at 800℃from the non-magnetic copper slag compound.The phase transition of the cathode particles with different electrolysis voltages and durations was investigated by X-ray fluorescence spectroscopy,inductively coupled plasma spectroscopy,X-ray diffraction,and scanning electron microscopy.The results showed that Fe_(3)Si and FeSi intermetallic compounds can be obtained by one-step electrolysis for 10 h at 3.2 V and two-step electrolysis of 2.5 V for 4 h and 3.2 V for 6 h.However,the current efficiency increased from 31.70%of one-step electrolysis to 39.87%of two-step electrolysis.The formation of Fe_(3)Si and FeSi intermetallic compounds is a gradual evolution process with the increase in Si content,following the formation law of Fe→FeSi→Fe_(3)Si+FeSi→FeSi.The metallic impurities of the final product were 1.29 wt.%Mg and 3.85 wt.%Al,respectively.展开更多
基金National Natural Science Foundation of China(52174315)Youth Scholars Promotion Plan of North China University of Science and Technology(QNTJ202304)。
文摘A combined process of molten salt electro-deoxidation and vacuum hot-pressing sintering was proposed to prepare AlCrFeNiTi_(x) high-entropy alloy(HEA)-TiN ceramic coating composites on low-carbon steel surfaces,where nitrides were introduced from BN isolater between graphite mold and HEA powders.The effect of Ti content on the microstructure,ultimate tensile strength,hardness,and wear resistance of the composites was investigated,and the bonding mechanism was elucidated.Results demonstrate that the composites have excellent hardness and wear resistance.The hardness of composites is significantly increased with the increase in Ti content.The extremely high wear resistance is attributed to the extremely high melting point and high thermal hardness of TiN,which can effectively prevent oxidation deformation of the worn surface.
基金This work was supported by the National Natural Science Foundation of China(No.52174315).
文摘Fe_(3)Si and FeSi intermetallic compounds were prepared by CaCl_(2)-NaCl melt electrolysis at 800℃from the non-magnetic copper slag compound.The phase transition of the cathode particles with different electrolysis voltages and durations was investigated by X-ray fluorescence spectroscopy,inductively coupled plasma spectroscopy,X-ray diffraction,and scanning electron microscopy.The results showed that Fe_(3)Si and FeSi intermetallic compounds can be obtained by one-step electrolysis for 10 h at 3.2 V and two-step electrolysis of 2.5 V for 4 h and 3.2 V for 6 h.However,the current efficiency increased from 31.70%of one-step electrolysis to 39.87%of two-step electrolysis.The formation of Fe_(3)Si and FeSi intermetallic compounds is a gradual evolution process with the increase in Si content,following the formation law of Fe→FeSi→Fe_(3)Si+FeSi→FeSi.The metallic impurities of the final product were 1.29 wt.%Mg and 3.85 wt.%Al,respectively.