Channel characterization and modeling are fundamental to communication system design,development,testing,and deployment.As the innate digital twins of wireless channels,channel models replicate real-world channel beha...Channel characterization and modeling are fundamental to communication system design,development,testing,and deployment.As the innate digital twins of wireless channels,channel models replicate real-world channel behaviors,e.g.,large-scale/small-scale fading,spatio-temporal-frequency non-stationarity,through mathematical and data-driven methods.This enables simulation-based validation across system development stages—from protocol design to network optimization-without costly physical testing.展开更多
Physical layer security is an important method to improve the secrecy performance of wireless communication systems.In this paper,we analyze the effect of employing channel correlation to improve security performance ...Physical layer security is an important method to improve the secrecy performance of wireless communication systems.In this paper,we analyze the effect of employing channel correlation to improve security performance in multiple-input multipleoutput(MIMO)scenario with antenna selection(AS)scheme.We first derive the analytical expressions of average secrecy capacity(ASC)and secrecy outage probability(SOP)by the first order Marcum Q function.Then,the asymptotic expressions of ASC and SOP in two specific scenarios are further derived.The correctness of analytical and asymptotic expressions is verified by Monte Carlo simulations.The conclusions suggest that the analytical expressions of ASC and SOP are related to the product of transmitting and receiving antennas;increasing the number of antennas is beneficial to ASC and SOP.Besides,when the target rate is set at a low level,strong channel correlation is bad for ASC,but is beneficial to SOP.展开更多
Identifying critical nodes is a pivotal research topic in network science,yet the efficient and accurate detection of highly influential nodes remains a challenge.Existing centrality measures predominantly rely on loc...Identifying critical nodes is a pivotal research topic in network science,yet the efficient and accurate detection of highly influential nodes remains a challenge.Existing centrality measures predominantly rely on local or global topological structures,often overlooking indirect connections and their interaction strengths.This leads to imprecise assessments of node importance,limiting practical applications.To address this,we propose a novel node centrality measure,termed six-degree gravity centrality(SDGC),grounded in the six degrees of separation theory,for the precise identification of influential nodes in networks.Specifically,we introduce a set of node influence parameters—node mass,dynamic interaction distance,and attraction coefficient—to enhance the gravity model.Node mass is calculated by integrating K-shell and closeness centrality measures.The dynamic interaction distance,informed by the six-degrees of separation theory,is determined through path searches within six hops between node pairs.The attraction coefficient is derived from the difference in K-shell values between nodes.By integrating these parameters,we develop an improved gravity model to quantify node influence.Experiments conducted on nine real-world networks demonstrate that SDGC significantly outperforms nine existing classical and state-of-the-art methods in identifying the influential nodes.展开更多
The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of...The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.展开更多
The satellite-terrestrial cooperative network is considered an emerging network architecture,which can adapt to various services and applications in the future communication network.In recent years,the combination of ...The satellite-terrestrial cooperative network is considered an emerging network architecture,which can adapt to various services and applications in the future communication network.In recent years,the combination of satellite communication and Mobile Edge Computing(MEC)has become an emerging research hotspot.Satellite edge computing can provide users with full coverage on-orbit computing services by deploying MEC servers on satellites.This paper studies the task offloading of multi-user and multi-edge computing satellites and proposes a novel algorithm that joint task offloading and communication computing resource optimization(JTO-CCRO).The JTO-CCRO is decoupled into task offloading and resource allocation sub-problems.After the mutual iteration of the two sub-problems,the system utility function can be further reduced.For the task offloading sub-problem,it is first confirmed that the offloading problem is a game problem.The offloading strategy can be obtained from the Nash equilibrium solution.We confirm resource optimization sub-problem is a convex optimization problem that can be solved by the Lagrange multiplier method.Simulation shows that the JTO-CCRO algorithm can converge quickly and effectively reduce the system utility function.展开更多
In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properti...In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properties of the wireless medium are collaborated to guarantee the secrecy of wireless transmissions. In the proposed system, WFRFT is first preform on the secret data, such that the transmitted signal is distorted and can only be neutralized by inverse-WFRFT with the same parameter. And then two streams of the transformed sequences that bearing different messages are cooperatively and simultaneously transmitted to two legitimate receivers via a beamforming-liked method, respectively. In general, both the rapid spatial decorrelation property and the inherent security features of WFRFT are leveraged, such that only the eavesdropper's is degraded, and hence, the wireless communication secrecy is reliably guaranteed. Numerical simulations are conducted to evaluate the performance of the proposed system in terms of the average bit error rate and the secrecy capacity.展开更多
A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal pr...A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal processing with too complex computation. Based on the fourth-order cumulant with 1-D slices and adaptive filters, an efficient algorithm is proposed to solve the problem and is extended for nonstationary stochastic processes. In order to achieve the accurate parameter estimation of direct sequence spread spectrum (DSSS) signals, the fast step uses the modified fourth-order cumulant to reduce the computing complexity. While the second step employs an adaptive recursive system to estimate the power spectrum in the frequency domain. In the case of intercepted signals without large enough data samples, the estimator provides good performance in parameter estimation and white Gaussian noise suppression. Computer simulations are included to corroborate the theoretical development with different signal-to-noise ratio conditions and recursive coefficients.展开更多
Several phosphoinositide 3-kinase(PI3 K) inhibitors are currently approved to treat hematolymphatic malignant diseases worldwide, and many drugs that have the same target are in the clinical research stage. In March 2...Several phosphoinositide 3-kinase(PI3 K) inhibitors are currently approved to treat hematolymphatic malignant diseases worldwide, and many drugs that have the same target are in the clinical research stage. In March 2022,duvelisib became the first PI3 K inhibitor approved in China indicated for the treatment of hematolymphatic malignant diseases. Meanwhile, linperlisib and copanlisib have almost completed the technical review of the clinical specialty. The Center for Drug Evaluation(CDE) of the China National Medical Products Administration(NMPA) found that class I PI3 K inhibitors can cause various degrees of immune-related adverse events, which are associated with action mechanisms, affecting the benefit-risk assessment of the drugs. On April 21, 2021, the United States Food and Drug Administration(FDA) convened the Oncologic Drugs Advisory Committee(ODAC)meeting to discuss the safety of PI3 K inhibitors indicated for hematolymphatic malignancies and their related risk of death. The hematological tumor group of CDE of the China NMPA summarized and combined the data on PI3 K inhibitors listed or under technical review for marketing authorization applications and found that such products may have unique efficacy and safety characteristics in Chinese patients with malignant lymphoma.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise ratios (SNRs), a novel adaptive modulation classification scheme is presented in this paper. Differ-ent from ...To make the modulation classification system more suitable for signals in a wide range of signal to noise ratios (SNRs), a novel adaptive modulation classification scheme is presented in this paper. Differ-ent from traditional schemes, the proposed scheme employs a new SNR estimation algorithm for small samples before modulation classification, which makes the modulation classifier work adaptively according to estimated SNRs. Furthermore, it uses three efficient features and support vector machines (SVM) in modulation classification. Computer simulation shows that the scheme can adaptively classify ten digital modulation types (i.e. 2ASK, 4ASK, 2FSK, 4FSK, 2PSK, 4PSK, 16QAM, TFM, π/4QPSK and OQPSK) at SNRS ranging from 0dB to 25dB and success rates are over 95% when SNR is not lower than 3dB. Accuracy, efficiency and simplicity of the proposed scheme are obviously improved, which make it more adaptive to engineering applications.展开更多
Satellite-terrestrial integrated(STI)systems represent the right solution to meet complex requirements of several services and sharing of the limited spectral resources between satellite systems and terrestrial ones m...Satellite-terrestrial integrated(STI)systems represent the right solution to meet complex requirements of several services and sharing of the limited spectral resources between satellite systems and terrestrial ones must be considered to optimize performance.Network architectures and traffic demand are different for the satellite component and for the terrestrial 5G/6G one,so that the requirements of spectral resources for satellite and terrestrial systems are expected to vary dynamically in a significant range.展开更多
Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for mo...Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.展开更多
With the rapid development of railways,especially high-speed railways,there is an increasingly urgent demand for new wireless communication system for railways.Taking the mature 5G technology as an opportunity,5G-rail...With the rapid development of railways,especially high-speed railways,there is an increasingly urgent demand for new wireless communication system for railways.Taking the mature 5G technology as an opportunity,5G-railways(5G-R)have been widely regarded as a solution to meet the diversified demands of railway wireless communications.For the design,deployment and improvement of 5GR networks,radio communication scenario classification plays an important role,affecting channel modeling and system performance evaluation.In this paper,a standardized radio communication scenario classification,including 18 scenarios,is proposed for 5GR.This paper analyzes the differences of 5G-R scenarios compared with the traditional cellular networks and GSM-railways,according to 5G-R requirements and the unique physical environment and propagation characteristics.The proposed standardized scenario classification helps deepen the research of 5G-R and promote the development and application of the existing advanced technologies in railways.展开更多
A new structure of next generation integrated communication system was proposed, which is composed of space segment based on satellites and terrestrial segment. Moreover, the characteristics of enhanced multiple acces...A new structure of next generation integrated communication system was proposed, which is composed of space segment based on satellites and terrestrial segment. Moreover, the characteristics of enhanced multiple access schemes based on orthogonal frequency division multiplexing (OFDM) technique were analyzed for satellite links. However, OFDM is a doubtful candidate as its higher peak-to-average power ratio (PAPR) that causes the distortion of high power amplifier (HPA). Furthermore, different schemes were evaluated and compared in terms of the HPA nonlinearity and the link level performance in detail. And the pilot-aided channel estimation and equalization techniques were also considered for analyzing the problem. Simulation results show that the bit error rate (BER) and block error rate (BLER) performance of orthogonal frequency division multiple access (OFDMA) outperforms that of single carrier-frequency division multiple access (SC-FDMA) for the satellite links in the proposed structure, though discrete Fourier transform-spread OFDM DFT-S OFDM has low PAPR, especially the BER performance of OFDMA is 3.6 dB larger than that of SC-FDMA at the target BER.展开更多
The VC merging algorithm is used widely for multipoint to point ATM communication. For AAL5 lacking multiplex ID field, the downstream receiving point cannot distinguish the multiplexed source in a multipoint to point...The VC merging algorithm is used widely for multipoint to point ATM communication. For AAL5 lacking multiplex ID field, the downstream receiving point cannot distinguish the multiplexed source in a multipoint to point VC after VC merging. So the source based rate distribution algorithms cannot work properly. We designed a source detection algorithm to enable the switch to know the number of sources and the cell rate of each source in a multipoint to point VC. These information is very important for the source based rate distribution algorithm. We used the ERICA algorithm in our simulations and the simulations demonstrated the proper operation of the source detection algorithm.展开更多
Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method ...Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method of wireless indoor positioning.However,it still has some shortcomings of that received signal strength(RSS) is multi-modal and sensitive to environmental factors.These characters would have a negative effect on the performance of positioning system.In this paper,a filtering algorithm based on multi-cluster-center is proposed.We make full use of this algorithm to optimize the training samples at off-line phase to improve the performance of non-linear fitting with the fingerprint feature,and further enhance the positioning accuracy.Finally,we use multiple sets of original WLAN signal samples and signal samples after filtering as the training input of positioning system respectively.After that,the results analysis is demonstrated.Simulation results show that it is a reliable algorithm to enhance the performance of WLAN indoor positioning.展开更多
In this paper,a new transmission scheme for Fractional Fourier Domain Transform Communication System(FrFDCS) based on OFDM is proposed,which can be potentially applied in transmitting control information in the cognit...In this paper,a new transmission scheme for Fractional Fourier Domain Transform Communication System(FrFDCS) based on OFDM is proposed,which can be potentially applied in transmitting control information in the cognitive radio(CR) network.The proposed system can take advantage of concentration property of non-stationary signals in fractional domain to obtain a better performance against Chirp like jammers.Meanwhile,Chirp format subcarriers of fractional domain OFDM can solve the orthogonality degradation in the traditional OFDM system,when it comes to the time-frequency-selective channel.The signal model is designed for the OFDM-based FrFDCS and the BER performance in the AWGN channel is analyzed and simulated as well.展开更多
A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain o...A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain order fractional Fourier domain and transformed by 4-WFRFT to compose the hybrid carrier signals. In the time domain CDMA technique is adopted for multiple accesses and time diversity gain. Compared to orthogonal frequency division multiplexing (OFDM) system, in which Fourier transform is adopted, the signal energy in HC system is distributed on the time-frequency plane more evenly and symmetrically. Thus, when there is a deep fading notch or single-frequency interference in the channel, the proposed method can split the interference to a broader range in order to reduce the influence, resulting in the better system performance. Moreover, the performances of the proposed system, such as peak-to-average power rate (PAPR) and security are also discussed in the paper.展开更多
In this paper, according to the AR4JA codes in deep space communication, two kinds of iterative decoding including partly parallel decoding and overlapped partly parallel decoding are analyzed, and the advantages and ...In this paper, according to the AR4JA codes in deep space communication, two kinds of iterative decoding including partly parallel decoding and overlapped partly parallel decoding are analyzed, and the advantages and disadvantages of them are listed. A modified overlapped partly parallel decoding that not only inherits the advantages of the two algorithms, but also overcomes the shortcomings of the two algorithms is proposed. The simulation results show that the three kinds of decoding have the same decoding performance; modified overlapped partly parallel decoding improves the iterative convergence rate and the throughput of system.展开更多
The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering...The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering game based on frequency subbands selection and predetemined threshold.Such threshold is being obtained in Gaussian and multipath fading channel according to the frequency-matching principle and BER performance.The dynamic selection of subbands will obtain high use efficiency without the help of frequency hopping,and propound a new thought to improve band limited communication for wireless multi-hop communication network.The effectiveness of the adaptive filtering method has been verified by interleaving spread spectrum orthogonal frequency division multiplexing (ISS-OFDM) in different interference conditions,and the simulating results based on network simulator 2 (NS2) indicate that system BER can be improved greatly.展开更多
A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is pr...A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is proposed. Regarding the addressed scenario, when the propagation link between HAPS and train is blocked by obstacles, a three-dimensional (3-D) geometrical single cylinder spatial-temporal channel model is presented, in which closed form, mathematically tractable space-time correlation functions are obtained. It shows that the correlation functions determined by the 3-D model are of significant difference with those of the conventional 2-D model. Based on the analysis model, the paper derives a realized simulation model using sum-of-sinusoids approach, and applies method of equal areas (MEA) and modified method of equal areas (MMEA) to determine the model parameters. The fitting performance of the simulation model with the analysis one is evaluated by two means-square error (MSE) performance criteria. Finally, numerical simulation results verify the mathematical analysis conclusion, when N ≥21, simulation model has an excellent fitness with the analysis one.展开更多
文摘Channel characterization and modeling are fundamental to communication system design,development,testing,and deployment.As the innate digital twins of wireless channels,channel models replicate real-world channel behaviors,e.g.,large-scale/small-scale fading,spatio-temporal-frequency non-stationarity,through mathematical and data-driven methods.This enables simulation-based validation across system development stages—from protocol design to network optimization-without costly physical testing.
基金supported in part by the National Natural Science Foundation of China under Grants NO.61971161 and 62171151in part by the Foundation of Heilongjiang Touyan Team under Grant NO.HITTY-20190009+3 种基金and in part by the Fundamental Research Funds for the Central Universities under Grant NO.HIT.OCEF.2021012supported in part by the Natural Science Foundation of China under Grant NO.62171160in part by the Fundamental Research Funds for the Central Universities under Grant NO.HIT.OCEF.2022055in part by the Shenzhen Science and Technology Program under Grants NO.JCYJ20190806143212658 and ZDSYS20210623091808025.
文摘Physical layer security is an important method to improve the secrecy performance of wireless communication systems.In this paper,we analyze the effect of employing channel correlation to improve security performance in multiple-input multipleoutput(MIMO)scenario with antenna selection(AS)scheme.We first derive the analytical expressions of average secrecy capacity(ASC)and secrecy outage probability(SOP)by the first order Marcum Q function.Then,the asymptotic expressions of ASC and SOP in two specific scenarios are further derived.The correctness of analytical and asymptotic expressions is verified by Monte Carlo simulations.The conclusions suggest that the analytical expressions of ASC and SOP are related to the product of transmitting and receiving antennas;increasing the number of antennas is beneficial to ASC and SOP.Besides,when the target rate is set at a low level,strong channel correlation is bad for ASC,but is beneficial to SOP.
基金supported by the National Natural Science Foundation of China(Grant No.62173065)the Natural Science Foundation of Beijing(Grant No.4242040)+1 种基金the Intelligent Policing and National Security Risk Management Laboratory Open Topics for the year 2025(Grant No.ZHKFYB2503)the Intelligent Policing and National Security Risk Management Laboratory Open Topics for the year 2024(Grant No.ZHKFZD2401).
文摘Identifying critical nodes is a pivotal research topic in network science,yet the efficient and accurate detection of highly influential nodes remains a challenge.Existing centrality measures predominantly rely on local or global topological structures,often overlooking indirect connections and their interaction strengths.This leads to imprecise assessments of node importance,limiting practical applications.To address this,we propose a novel node centrality measure,termed six-degree gravity centrality(SDGC),grounded in the six degrees of separation theory,for the precise identification of influential nodes in networks.Specifically,we introduce a set of node influence parameters—node mass,dynamic interaction distance,and attraction coefficient—to enhance the gravity model.Node mass is calculated by integrating K-shell and closeness centrality measures.The dynamic interaction distance,informed by the six-degrees of separation theory,is determined through path searches within six hops between node pairs.The attraction coefficient is derived from the difference in K-shell values between nodes.By integrating these parameters,we develop an improved gravity model to quantify node influence.Experiments conducted on nine real-world networks demonstrate that SDGC significantly outperforms nine existing classical and state-of-the-art methods in identifying the influential nodes.
基金supported by the National Basic Research Program of China (973 Program No.2012CB316100)
文摘The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.
基金supported by the National Key Research and Development Program of China under Grant 2021YFB2900500the Natural Science Foundation for Outstanding Young Scholars of Heilongjiang Province under Grant YQ2020F001the Fundamental Research Funds for the Central Universities under Grant FRFCU 9803503821.
文摘The satellite-terrestrial cooperative network is considered an emerging network architecture,which can adapt to various services and applications in the future communication network.In recent years,the combination of satellite communication and Mobile Edge Computing(MEC)has become an emerging research hotspot.Satellite edge computing can provide users with full coverage on-orbit computing services by deploying MEC servers on satellites.This paper studies the task offloading of multi-user and multi-edge computing satellites and proposes a novel algorithm that joint task offloading and communication computing resource optimization(JTO-CCRO).The JTO-CCRO is decoupled into task offloading and resource allocation sub-problems.After the mutual iteration of the two sub-problems,the system utility function can be further reduced.For the task offloading sub-problem,it is first confirmed that the offloading problem is a game problem.The offloading strategy can be obtained from the Nash equilibrium solution.We confirm resource optimization sub-problem is a convex optimization problem that can be solved by the Lagrange multiplier method.Simulation shows that the JTO-CCRO algorithm can converge quickly and effectively reduce the system utility function.
基金supported by the National Basic Research Program of China under Grant 2013CB329003the National Natural Science Founda-tion General Program of China under Grant 61171110
文摘In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properties of the wireless medium are collaborated to guarantee the secrecy of wireless transmissions. In the proposed system, WFRFT is first preform on the secret data, such that the transmitted signal is distorted and can only be neutralized by inverse-WFRFT with the same parameter. And then two streams of the transformed sequences that bearing different messages are cooperatively and simultaneously transmitted to two legitimate receivers via a beamforming-liked method, respectively. In general, both the rapid spatial decorrelation property and the inherent security features of WFRFT are leveraged, such that only the eavesdropper's is degraded, and hence, the wireless communication secrecy is reliably guaranteed. Numerical simulations are conducted to evaluate the performance of the proposed system in terms of the average bit error rate and the secrecy capacity.
文摘A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal processing with too complex computation. Based on the fourth-order cumulant with 1-D slices and adaptive filters, an efficient algorithm is proposed to solve the problem and is extended for nonstationary stochastic processes. In order to achieve the accurate parameter estimation of direct sequence spread spectrum (DSSS) signals, the fast step uses the modified fourth-order cumulant to reduce the computing complexity. While the second step employs an adaptive recursive system to estimate the power spectrum in the frequency domain. In the case of intercepted signals without large enough data samples, the estimator provides good performance in parameter estimation and white Gaussian noise suppression. Computer simulations are included to corroborate the theoretical development with different signal-to-noise ratio conditions and recursive coefficients.
文摘Several phosphoinositide 3-kinase(PI3 K) inhibitors are currently approved to treat hematolymphatic malignant diseases worldwide, and many drugs that have the same target are in the clinical research stage. In March 2022,duvelisib became the first PI3 K inhibitor approved in China indicated for the treatment of hematolymphatic malignant diseases. Meanwhile, linperlisib and copanlisib have almost completed the technical review of the clinical specialty. The Center for Drug Evaluation(CDE) of the China National Medical Products Administration(NMPA) found that class I PI3 K inhibitors can cause various degrees of immune-related adverse events, which are associated with action mechanisms, affecting the benefit-risk assessment of the drugs. On April 21, 2021, the United States Food and Drug Administration(FDA) convened the Oncologic Drugs Advisory Committee(ODAC)meeting to discuss the safety of PI3 K inhibitors indicated for hematolymphatic malignancies and their related risk of death. The hematological tumor group of CDE of the China NMPA summarized and combined the data on PI3 K inhibitors listed or under technical review for marketing authorization applications and found that such products may have unique efficacy and safety characteristics in Chinese patients with malignant lymphoma.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise ratios (SNRs), a novel adaptive modulation classification scheme is presented in this paper. Differ-ent from traditional schemes, the proposed scheme employs a new SNR estimation algorithm for small samples before modulation classification, which makes the modulation classifier work adaptively according to estimated SNRs. Furthermore, it uses three efficient features and support vector machines (SVM) in modulation classification. Computer simulation shows that the scheme can adaptively classify ten digital modulation types (i.e. 2ASK, 4ASK, 2FSK, 4FSK, 2PSK, 4PSK, 16QAM, TFM, π/4QPSK and OQPSK) at SNRS ranging from 0dB to 25dB and success rates are over 95% when SNR is not lower than 3dB. Accuracy, efficiency and simplicity of the proposed scheme are obviously improved, which make it more adaptive to engineering applications.
文摘Satellite-terrestrial integrated(STI)systems represent the right solution to meet complex requirements of several services and sharing of the limited spectral resources between satellite systems and terrestrial ones must be considered to optimize performance.Network architectures and traffic demand are different for the satellite component and for the terrestrial 5G/6G one,so that the requirements of spectral resources for satellite and terrestrial systems are expected to vary dynamically in a significant range.
基金supported by the Bill & Melinda Gates Foundation and the Minderoo Foundation
文摘Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.
基金the National Key R&D Program of China under Grant 2022YFF0608103the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and 62171021+2 种基金the State Key Laboratory of Rail Traffic Control and Safety under Grant RCS2022ZZ004the Project of China State Railway Group under Grant P2020G004,SY2021G001,and P2021G012the Central Universities under Grant 2022JBXT001.
文摘With the rapid development of railways,especially high-speed railways,there is an increasingly urgent demand for new wireless communication system for railways.Taking the mature 5G technology as an opportunity,5G-railways(5G-R)have been widely regarded as a solution to meet the diversified demands of railway wireless communications.For the design,deployment and improvement of 5GR networks,radio communication scenario classification plays an important role,affecting channel modeling and system performance evaluation.In this paper,a standardized radio communication scenario classification,including 18 scenarios,is proposed for 5GR.This paper analyzes the differences of 5G-R scenarios compared with the traditional cellular networks and GSM-railways,according to 5G-R requirements and the unique physical environment and propagation characteristics.The proposed standardized scenario classification helps deepen the research of 5G-R and promote the development and application of the existing advanced technologies in railways.
基金Project(60532030) supported by the National Natural Science Foundation of China
文摘A new structure of next generation integrated communication system was proposed, which is composed of space segment based on satellites and terrestrial segment. Moreover, the characteristics of enhanced multiple access schemes based on orthogonal frequency division multiplexing (OFDM) technique were analyzed for satellite links. However, OFDM is a doubtful candidate as its higher peak-to-average power ratio (PAPR) that causes the distortion of high power amplifier (HPA). Furthermore, different schemes were evaluated and compared in terms of the HPA nonlinearity and the link level performance in detail. And the pilot-aided channel estimation and equalization techniques were also considered for analyzing the problem. Simulation results show that the bit error rate (BER) and block error rate (BLER) performance of orthogonal frequency division multiple access (OFDMA) outperforms that of single carrier-frequency division multiple access (SC-FDMA) for the satellite links in the proposed structure, though discrete Fourier transform-spread OFDM DFT-S OFDM has low PAPR, especially the BER performance of OFDMA is 3.6 dB larger than that of SC-FDMA at the target BER.
文摘The VC merging algorithm is used widely for multipoint to point ATM communication. For AAL5 lacking multiplex ID field, the downstream receiving point cannot distinguish the multiplexed source in a multipoint to point VC after VC merging. So the source based rate distribution algorithms cannot work properly. We designed a source detection algorithm to enable the switch to know the number of sources and the cell rate of each source in a multipoint to point VC. These information is very important for the source based rate distribution algorithm. We used the ERICA algorithm in our simulations and the simulations demonstrated the proper operation of the source detection algorithm.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61071105 and 61101122)the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2010090)
文摘Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method of wireless indoor positioning.However,it still has some shortcomings of that received signal strength(RSS) is multi-modal and sensitive to environmental factors.These characters would have a negative effect on the performance of positioning system.In this paper,a filtering algorithm based on multi-cluster-center is proposed.We make full use of this algorithm to optimize the training samples at off-line phase to improve the performance of non-linear fitting with the fingerprint feature,and further enhance the positioning accuracy.Finally,we use multiple sets of original WLAN signal samples and signal samples after filtering as the training input of positioning system respectively.After that,the results analysis is demonstrated.Simulation results show that it is a reliable algorithm to enhance the performance of WLAN indoor positioning.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China(Grant No. F200906)
文摘In this paper,a new transmission scheme for Fractional Fourier Domain Transform Communication System(FrFDCS) based on OFDM is proposed,which can be potentially applied in transmitting control information in the cognitive radio(CR) network.The proposed system can take advantage of concentration property of non-stationary signals in fractional domain to obtain a better performance against Chirp like jammers.Meanwhile,Chirp format subcarriers of fractional domain OFDM can solve the orthogonality degradation in the traditional OFDM system,when it comes to the time-frequency-selective channel.The signal model is designed for the OFDM-based FrFDCS and the BER performance in the AWGN channel is analyzed and simulated as well.
基金Sponsored by the National Natural Science Foundation General Program of China(Grant No.61171110)
文摘A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain order fractional Fourier domain and transformed by 4-WFRFT to compose the hybrid carrier signals. In the time domain CDMA technique is adopted for multiple accesses and time diversity gain. Compared to orthogonal frequency division multiplexing (OFDM) system, in which Fourier transform is adopted, the signal energy in HC system is distributed on the time-frequency plane more evenly and symmetrically. Thus, when there is a deep fading notch or single-frequency interference in the channel, the proposed method can split the interference to a broader range in order to reduce the influence, resulting in the better system performance. Moreover, the performances of the proposed system, such as peak-to-average power rate (PAPR) and security are also discussed in the paper.
基金Sponsored by the National Natural Science Foundation of China( Grant No. 61032003)the Fundamental Research Funds for the Central Universities( Grant No. HIT. NSRIF.2012021)
文摘In this paper, according to the AR4JA codes in deep space communication, two kinds of iterative decoding including partly parallel decoding and overlapped partly parallel decoding are analyzed, and the advantages and disadvantages of them are listed. A modified overlapped partly parallel decoding that not only inherits the advantages of the two algorithms, but also overcomes the shortcomings of the two algorithms is proposed. The simulation results show that the three kinds of decoding have the same decoding performance; modified overlapped partly parallel decoding improves the iterative convergence rate and the throughput of system.
基金Supported by the National Nature Science Foundation of China(No.61302074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20122301120004)+1 种基金the Natural Science Foundation of Heilongjiang Province(No.QC2013C061)Research Foundation of Education Bureau of Heilongjiang Province(No.12531480)
文摘The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering game based on frequency subbands selection and predetemined threshold.Such threshold is being obtained in Gaussian and multipath fading channel according to the frequency-matching principle and BER performance.The dynamic selection of subbands will obtain high use efficiency without the help of frequency hopping,and propound a new thought to improve band limited communication for wireless multi-hop communication network.The effectiveness of the adaptive filtering method has been verified by interleaving spread spectrum orthogonal frequency division multiplexing (ISS-OFDM) in different interference conditions,and the simulating results based on network simulator 2 (NS2) indicate that system BER can be improved greatly.
基金Supported by the National Natural Science Foundation of China (No. 60532030).
文摘A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is proposed. Regarding the addressed scenario, when the propagation link between HAPS and train is blocked by obstacles, a three-dimensional (3-D) geometrical single cylinder spatial-temporal channel model is presented, in which closed form, mathematically tractable space-time correlation functions are obtained. It shows that the correlation functions determined by the 3-D model are of significant difference with those of the conventional 2-D model. Based on the analysis model, the paper derives a realized simulation model using sum-of-sinusoids approach, and applies method of equal areas (MEA) and modified method of equal areas (MMEA) to determine the model parameters. The fitting performance of the simulation model with the analysis one is evaluated by two means-square error (MSE) performance criteria. Finally, numerical simulation results verify the mathematical analysis conclusion, when N ≥21, simulation model has an excellent fitness with the analysis one.