1.Introduction From the first-generation(1G)through the second-generation(2G)Global System for Mobile Communications(GSM),the third-generation(3G)wideband code division multiple access(WCDMA)to the fourth-generation(4...1.Introduction From the first-generation(1G)through the second-generation(2G)Global System for Mobile Communications(GSM),the third-generation(3G)wideband code division multiple access(WCDMA)to the fourth-generation(4G)long-term evolution(LTE)wireless networks,terrestrial networks(TNs)have demonstrated significant success in increasing communication speeds and improving quality of service(QoS)for users.展开更多
BACKGROUND Child vaccination plays a great role in preventing infectious diseases in children.While Ethiopia has emphasized child vaccination,its effectiveness largely depends on efficient communication between health...BACKGROUND Child vaccination plays a great role in preventing infectious diseases in children.While Ethiopia has emphasized child vaccination,its effectiveness largely depends on efficient communication between health practitioners and mothers/caregivers.Thus,sufficient communication contributes to promoting child immunization and in turn improving child health.AIM To examine child vaccine communication practices and strategies as well as their relationship with sociodemographic characteristics of respondents in the Amhara region of Ethiopia.METHODS A quantitative cross-sectional survey was conducted using a pretested Likert scale questionnaire and distributed to 123 health workers in primary healthcare centers between April 2024 and June 2024.The data were analyzed using both descriptive and inferential statistics.RESULTS The results indicated that the most common vaccine communication activities included education and communication(mean score=24.1),vaccine data registration(mean score=8.86),and information exchange(mean score=8.3).A significant correlation was found between the implementation of interpersonal health communication principles and immunization communication training(F=341.756,P=0.000,P<0.05).However,no significant correlations were observed between age,education,work experience,and vaccine communication practices.Additionally,the study found that the application of interpersonal communication principles was associated with the perceived relevance of immunization communication(F=27.790,P=0.000,P<0.05).CONCLUSION Based on the findings the study concluded that communication practice in promoting child immunization is insufficient.To enhance vaccine acceptance,continuous immunization communication training for health workers is recommended.展开更多
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig...Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.展开更多
Digital infrastructure possesses dual attributes as both an international public good and a strategic communication tool for major countries. In recent years, the US has been active in the field of global digital infr...Digital infrastructure possesses dual attributes as both an international public good and a strategic communication tool for major countries. In recent years, the US has been active in the field of global digital infrastructure, showing a trend of deep coupling and mutual embedding with strategic communication. The US has built a strategic communication system for digital infrastructure. This system is designed to set the international agenda, collect information and intelligence, and deter its competitors. The system presents a three-way coherent infrastructure of a basic layer, application layer,and value layer. The mode of operation is characterized by commercial force collaboration, alliance system linkage, and global multi-domain network layout. However, to maintain its unipolar digital hegemony,the United States has over-instrumentalized its digital infrastructure and exploited and amplified the asymmetry of digital science and technology for a long period of time, which not only highlights its unilateral stance and exclusionary nature but also results in a global digital divide and trust deficit, which will pose constraints on its sustainability in the long term.展开更多
Low earth orbit(LEO)satellite communication which can provide global wireless ser-vice plays a critical role in the future wireless communication networks.However,due to the high speed of satellite motion,numerous nar...Low earth orbit(LEO)satellite communication which can provide global wireless ser-vice plays a critical role in the future wireless communication networks.However,due to the high speed of satellite motion,numerous narrow beams,and complex satellite-terrestrial channels,the initial access between the LEO satellites and user terminals(UEs)becomes more complicated.To establish a stable link,a beam search is required between the satellite and the UE.However,tradi-tional beam search methods(e.g.,exhaustive search)have high time complexity which is not suit-able in high-speed scenarios.Therefore,in this paper,a sensing-aided hierarchical beam search method is proposed,which is performed in two stages.In the first stage,wide beam scanning is per-formed to find the optimal angular range.In the second stage,after determining the directions of narrow beams via sensing the direction of arrival(DOA)of satellite signals,the narrow beams gen-erated at estimated directions are used to sweep the satellite beams.This method can help fast beam alignment and obtain high beam search accuracy,which is verified by simulation results.Moreover,we analyze the gain of beam alignment from the two-stage beam search method.展开更多
High-Frequency(HF)communication is widely used for long-distance transmission in remote and disaster areas.However,the dynamic nature of the ionosphere and multipath propagation in the HF channel pose significant chal...High-Frequency(HF)communication is widely used for long-distance transmission in remote and disaster areas.However,the dynamic nature of the ionosphere and multipath propagation in the HF channel pose significant challenges to designing efficient and robust communication systems.In this paper,we propose a Fixed Station(FS)and frequency matching method,as well as a power allocation method,to improve the sum-rate of air-to-ground HF communication networks.We derive optimal power allocation among users that share the same frequency,based on which a modified water-filling algorithm is used to solve the power allocation problem in multi-user scenarios,while a low-complexity algorithm is proposed to solve the integer optimization problem of frequency-FS matching.Simulation results demonstrate that the proposed algorithm outperforms the naive algorithm,indicating its effectiveness.展开更多
In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Comm...In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Communication Node(PCN).Specifically,all nodes transmit to the UAV exploiting uplink non-Orthogonal Multiple Access(NOMA),while the UAV performs covert transmission to the PCN at the same frequency.To minimize the average age of covert information,we formulate a joint optimization problem of UAV trajectory and power allocation designing subject to multi-dimensional constraints including covertness demand,communication quality requirement,maximum flying speed,and the maximum available resources.To address this problem,we embed Signomial Programming(SP)into Deep Reinforcement Learning(DRL)and propose a DRL framework capable of handling the constrained Markov decision processes,named SP embedded Soft Actor-Critic(SSAC).By adopting SSAC,we achieve the joint optimization of UAV trajectory and power allocation.Our simulations show the optimized UAV trajectory and verify the superiority of SSAC compared with various existing baseline schemes.The results of this study suggest that by maintaining appropriate distances from both the PCN and CNs,one can effectively enhance the performance of covert communication by reducing the detection probability of the CNs.展开更多
In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disaster...In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disasters frequently damage terrestrial communication infrastructures,making the rapid deployment of emergency communication networks in affected areas critical in increasing rescue efficiency[2].展开更多
Non-Orthogonal Multiple Access(NOMA)in Unmanned Aerial Vehicle(UAV)-assisted communications is a promising technique in future wireless networks.However,for UAV-assisted communication systems,secure and covert communi...Non-Orthogonal Multiple Access(NOMA)in Unmanned Aerial Vehicle(UAV)-assisted communications is a promising technique in future wireless networks.However,for UAV-assisted communication systems,secure and covert communication is crucial for maintaining confidentiality in battlefield environments.This study focuses on a novel two-way relaying system assisted by the UAV,leveraging Power Domain NOMA(PD-NOMA),trajectory design,and power allocation strategies to enhance secure communication rates.A PD-NOMA scheme is proposed for the half-duplex two-way UAV relay,utilizing the advantage of Air-to-Ground(A2G)channel.The covert communication scheme is proposed based on the proposed NOMA scheme.A method using permutation matrices is proposed to dynamically adjust the NOMA decoding order based on the UAV trajectory and communication power levels,to reduce complexity while ensuring information causality constraints.A low-interference jamming strategy is proposed for the system for covertness communication.Because of the non-convexity of the problem,the power allocation and trajectory design problem are solved with Difference of Convex(DC)programming and Successive Convex Approximation(SCA).The schemes of jointly designing the NOMA order,allocating the communication power,and designing the trajectory are proposed to maximize the minimum secure communication data rate.Simulation results show that the proposed NOMA-UAV secure communication schemes outperform the benchmarks of the conventional Orthogonal Multiple Access(OMA)method.展开更多
Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th...Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.展开更多
The Optical Wireless Communication(OWC)offers the high capacity of optical fiber communication with the flexibility of wireless communication.Since it works in the optical region of the ElectroMagnetic(EM)spectrum,it ...The Optical Wireless Communication(OWC)offers the high capacity of optical fiber communication with the flexibility of wireless communication.Since it works in the optical region of the ElectroMagnetic(EM)spectrum,it guarantees safety and security which are critical in radio and microwave frequency communication.The principal objective of this paper is to analyze the indoor OWC systems on these guaranteed features,and safety and security are jointly denoted by the term green.The high obstacle impermeability of optical signals and their directivity strengthen the security of indoor OWC data transmission.The confidentiality and authenticity of optical wireless data can also be preserved with the Quantum Key Distribution(QKD).This paper provides a technological overview and a review of literature about the OWC system that helps to identify the challenges in the path of a ubiquitous deployment of green wireless communication systems.Significant advancements in the sources and detectors are discussed together with the coding,modulation and multiplexing techniques for making highly robust OWC links.The ubiquitous deployment of green OWC necessitates the development of optical transmitters and receivers,performance enhancement techniques,incorporation of uplink and energy harvesting abilities,and safety and security enhancement techniques.Hence,a special emphasis is placed on these aspects and their challenges towards the green implementation.Furthermore,the paper explores some significant indoor applications based on the OWC that have great impacts on the Next Generation Networks(NGN)and the Internet of Things(IoT).展开更多
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu...This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.展开更多
Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the d...Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.展开更多
With the boom in maritime activities,the need for highly reliable maritime communication is becoming urgent,which is an important component of 5G/6G communication networks.However,the bandwidth reuse characteristic of...With the boom in maritime activities,the need for highly reliable maritime communication is becoming urgent,which is an important component of 5G/6G communication networks.However,the bandwidth reuse characteristic of 5G/6G networks will inevitably lead to severe interference,resulting in degradation in the communication performance of maritime users.In this paper,we propose a safe deep reinforcement learning based interference coordination scheme to jointly optimize the power control and bandwidth allocation in maritime communication systems,and exploit the quality-of-service requirements of users as the risk value references to evaluate the communication policies.In particular,this scheme designs a deep neural network to select the communication policies through the evaluation network and update the parameters using the target network,which improves the communication performance and speeds up the convergence rate.Moreover,the Nash equilibrium of the interference coordination game and the computational complexity of the proposed scheme are analyzed.Simulation and experimental results verify the performance gain of the proposed scheme compared with benchmarks.展开更多
This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The ba...This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The base station(BS)provides short packet services to ground users using the non-orthogonal multiple access(NOMA)protocol through UAV-RIS,while preventing eavesdropper attacks.To optimize SEE,a joint optimization is performed concerning power allocation,UAV position,decoding order,and RIS phase shifts.An iterative algorithm based on block coordinate descent is proposed for mixed-integer non-convex SEE optimization problem.The original problem is decomposed into three sub-problems,solved alternately using successive convex approximation(SCA),quadratic transformation,penalty function,and semi-definite programming(SDP).Simulation results demonstrate the performance of the UAV-RIS-enhanced short-packet system under different parameters and verify the algorithm’s convergence.Compared to benchmark schemes such as orthogonal multiple access,long packet communication,and sum SEE,the proposed UAV-RIS-enhanced short-packet scheme achieves the higher minimum user’s SEE.展开更多
1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their...1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their incredible speed of development and wide-reaching impact,mobile communications serve as the cornerstone of the Internet of Everything,profoundly reshaping human cognitive abilities and ways of thinking.Furthermore,mobile communications are altering the patterns of production and life,driving leaps in productivity quality,and strongly promot-ing innovation within human civilization.展开更多
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(...In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.展开更多
1.Introduction Sports mega-events should transcend mere celebrations and generate lasting societal impacts.The“post-Olympic”era legacies often become focal points of global interest.1,2 As the apex of international ...1.Introduction Sports mega-events should transcend mere celebrations and generate lasting societal impacts.The“post-Olympic”era legacies often become focal points of global interest.1,2 As the apex of international multi-sport events,the Olympics offer an unparalleled opportunity to shift societal health behaviors.When spectators are motivated to engage in sports and elevate their understanding of athletics through the event,it constitutes the Olympics’most significant legacy.3 The 2024 Paris Olympics emerged as a global showcase for pioneering health communication strategies,utilizing digital media to advance physical fitness and sports knowledge.This article delves into the digital health communication strategies employed during the Paris Olympics and proposes policy recommendations to amplify global public health benefits.展开更多
This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because ...Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.展开更多
基金support from the Development Program from Institute for Communication Systems(ICS),the 5G&6G Innovation Centre(5GIC&6GIC)at University of Surreythe China Scholarship Council,the National Natural Science Foundation of China(62371158)the Major Key Project of Pengcheng Laboratory(PCL2024A01).
文摘1.Introduction From the first-generation(1G)through the second-generation(2G)Global System for Mobile Communications(GSM),the third-generation(3G)wideband code division multiple access(WCDMA)to the fourth-generation(4G)long-term evolution(LTE)wireless networks,terrestrial networks(TNs)have demonstrated significant success in increasing communication speeds and improving quality of service(QoS)for users.
文摘BACKGROUND Child vaccination plays a great role in preventing infectious diseases in children.While Ethiopia has emphasized child vaccination,its effectiveness largely depends on efficient communication between health practitioners and mothers/caregivers.Thus,sufficient communication contributes to promoting child immunization and in turn improving child health.AIM To examine child vaccine communication practices and strategies as well as their relationship with sociodemographic characteristics of respondents in the Amhara region of Ethiopia.METHODS A quantitative cross-sectional survey was conducted using a pretested Likert scale questionnaire and distributed to 123 health workers in primary healthcare centers between April 2024 and June 2024.The data were analyzed using both descriptive and inferential statistics.RESULTS The results indicated that the most common vaccine communication activities included education and communication(mean score=24.1),vaccine data registration(mean score=8.86),and information exchange(mean score=8.3).A significant correlation was found between the implementation of interpersonal health communication principles and immunization communication training(F=341.756,P=0.000,P<0.05).However,no significant correlations were observed between age,education,work experience,and vaccine communication practices.Additionally,the study found that the application of interpersonal communication principles was associated with the perceived relevance of immunization communication(F=27.790,P=0.000,P<0.05).CONCLUSION Based on the findings the study concluded that communication practice in promoting child immunization is insufficient.To enhance vaccine acceptance,continuous immunization communication training for health workers is recommended.
文摘Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.
基金a phased achievement of a major project of the National Social Science Fund of China,titled “Research on the Security Impact of the Situation in the Bay of Bengal Region on China’s East Data West Computing Project”(Project No.:22ZDA181)。
文摘Digital infrastructure possesses dual attributes as both an international public good and a strategic communication tool for major countries. In recent years, the US has been active in the field of global digital infrastructure, showing a trend of deep coupling and mutual embedding with strategic communication. The US has built a strategic communication system for digital infrastructure. This system is designed to set the international agenda, collect information and intelligence, and deter its competitors. The system presents a three-way coherent infrastructure of a basic layer, application layer,and value layer. The mode of operation is characterized by commercial force collaboration, alliance system linkage, and global multi-domain network layout. However, to maintain its unipolar digital hegemony,the United States has over-instrumentalized its digital infrastructure and exploited and amplified the asymmetry of digital science and technology for a long period of time, which not only highlights its unilateral stance and exclusionary nature but also results in a global digital divide and trust deficit, which will pose constraints on its sustainability in the long term.
基金supported in part by Chongqing Natural Science Foundation Innovation and Development Joint Fund(No.CSTB2024NSCQ-LMX0024)in part by Shanghai Natu-ral Science Foundation(No.24ZR1421800)。
文摘Low earth orbit(LEO)satellite communication which can provide global wireless ser-vice plays a critical role in the future wireless communication networks.However,due to the high speed of satellite motion,numerous narrow beams,and complex satellite-terrestrial channels,the initial access between the LEO satellites and user terminals(UEs)becomes more complicated.To establish a stable link,a beam search is required between the satellite and the UE.However,tradi-tional beam search methods(e.g.,exhaustive search)have high time complexity which is not suit-able in high-speed scenarios.Therefore,in this paper,a sensing-aided hierarchical beam search method is proposed,which is performed in two stages.In the first stage,wide beam scanning is per-formed to find the optimal angular range.In the second stage,after determining the directions of narrow beams via sensing the direction of arrival(DOA)of satellite signals,the narrow beams gen-erated at estimated directions are used to sweep the satellite beams.This method can help fast beam alignment and obtain high beam search accuracy,which is verified by simulation results.Moreover,we analyze the gain of beam alignment from the two-stage beam search method.
基金supported by the National Natural Science Foundation of China(Nos.U20B2038,62231027,62171462,61931011,62001514 and 62271501)。
文摘High-Frequency(HF)communication is widely used for long-distance transmission in remote and disaster areas.However,the dynamic nature of the ionosphere and multipath propagation in the HF channel pose significant challenges to designing efficient and robust communication systems.In this paper,we propose a Fixed Station(FS)and frequency matching method,as well as a power allocation method,to improve the sum-rate of air-to-ground HF communication networks.We derive optimal power allocation among users that share the same frequency,based on which a modified water-filling algorithm is used to solve the power allocation problem in multi-user scenarios,while a low-complexity algorithm is proposed to solve the integer optimization problem of frequency-FS matching.Simulation results demonstrate that the proposed algorithm outperforms the naive algorithm,indicating its effectiveness.
基金This study was co-supported by the National Natural Science Foundation of China(No.62025110&62271093)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-LZX0108).
文摘In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Communication Node(PCN).Specifically,all nodes transmit to the UAV exploiting uplink non-Orthogonal Multiple Access(NOMA),while the UAV performs covert transmission to the PCN at the same frequency.To minimize the average age of covert information,we formulate a joint optimization problem of UAV trajectory and power allocation designing subject to multi-dimensional constraints including covertness demand,communication quality requirement,maximum flying speed,and the maximum available resources.To address this problem,we embed Signomial Programming(SP)into Deep Reinforcement Learning(DRL)and propose a DRL framework capable of handling the constrained Markov decision processes,named SP embedded Soft Actor-Critic(SSAC).By adopting SSAC,we achieve the joint optimization of UAV trajectory and power allocation.Our simulations show the optimized UAV trajectory and verify the superiority of SSAC compared with various existing baseline schemes.The results of this study suggest that by maintaining appropriate distances from both the PCN and CNs,one can effectively enhance the performance of covert communication by reducing the detection probability of the CNs.
基金supported in part by the National Natural Science Foundation of China(U2441226).
文摘In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disasters frequently damage terrestrial communication infrastructures,making the rapid deployment of emergency communication networks in affected areas critical in increasing rescue efficiency[2].
基金supported in part by the National Natural Science Foundation of China(No.62171154)in part by the Fundamental Research Funds for the Central Universities,China(No.HIT.OCEF.2023030).
文摘Non-Orthogonal Multiple Access(NOMA)in Unmanned Aerial Vehicle(UAV)-assisted communications is a promising technique in future wireless networks.However,for UAV-assisted communication systems,secure and covert communication is crucial for maintaining confidentiality in battlefield environments.This study focuses on a novel two-way relaying system assisted by the UAV,leveraging Power Domain NOMA(PD-NOMA),trajectory design,and power allocation strategies to enhance secure communication rates.A PD-NOMA scheme is proposed for the half-duplex two-way UAV relay,utilizing the advantage of Air-to-Ground(A2G)channel.The covert communication scheme is proposed based on the proposed NOMA scheme.A method using permutation matrices is proposed to dynamically adjust the NOMA decoding order based on the UAV trajectory and communication power levels,to reduce complexity while ensuring information causality constraints.A low-interference jamming strategy is proposed for the system for covertness communication.Because of the non-convexity of the problem,the power allocation and trajectory design problem are solved with Difference of Convex(DC)programming and Successive Convex Approximation(SCA).The schemes of jointly designing the NOMA order,allocating the communication power,and designing the trajectory are proposed to maximize the minimum secure communication data rate.Simulation results show that the proposed NOMA-UAV secure communication schemes outperform the benchmarks of the conventional Orthogonal Multiple Access(OMA)method.
基金supported by the Science and Technology Project of the State Grid Corporation of China(5400-202255158A-1-1-ZN).
文摘Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.
基金This publication is an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme(Grant No.Ph.D-MLA/4(16))of Ministry of Electronics&Information Technology,Government of India,being implemented by Digital India Corporation.
文摘The Optical Wireless Communication(OWC)offers the high capacity of optical fiber communication with the flexibility of wireless communication.Since it works in the optical region of the ElectroMagnetic(EM)spectrum,it guarantees safety and security which are critical in radio and microwave frequency communication.The principal objective of this paper is to analyze the indoor OWC systems on these guaranteed features,and safety and security are jointly denoted by the term green.The high obstacle impermeability of optical signals and their directivity strengthen the security of indoor OWC data transmission.The confidentiality and authenticity of optical wireless data can also be preserved with the Quantum Key Distribution(QKD).This paper provides a technological overview and a review of literature about the OWC system that helps to identify the challenges in the path of a ubiquitous deployment of green wireless communication systems.Significant advancements in the sources and detectors are discussed together with the coding,modulation and multiplexing techniques for making highly robust OWC links.The ubiquitous deployment of green OWC necessitates the development of optical transmitters and receivers,performance enhancement techniques,incorporation of uplink and energy harvesting abilities,and safety and security enhancement techniques.Hence,a special emphasis is placed on these aspects and their challenges towards the green implementation.Furthermore,the paper explores some significant indoor applications based on the OWC that have great impacts on the Next Generation Networks(NGN)and the Internet of Things(IoT).
基金supported by the National Natural Science Foundation of China(No.62371080 and 62031006)the National Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0597)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2022063)。
文摘This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.
基金supported by the National Key Research and Development Program of China(2023YFB2804704)the National Natural Science Foundation of China(12174292,12374278,and 62105250).
文摘Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.
文摘With the boom in maritime activities,the need for highly reliable maritime communication is becoming urgent,which is an important component of 5G/6G communication networks.However,the bandwidth reuse characteristic of 5G/6G networks will inevitably lead to severe interference,resulting in degradation in the communication performance of maritime users.In this paper,we propose a safe deep reinforcement learning based interference coordination scheme to jointly optimize the power control and bandwidth allocation in maritime communication systems,and exploit the quality-of-service requirements of users as the risk value references to evaluate the communication policies.In particular,this scheme designs a deep neural network to select the communication policies through the evaluation network and update the parameters using the target network,which improves the communication performance and speeds up the convergence rate.Moreover,the Nash equilibrium of the interference coordination game and the computational complexity of the proposed scheme are analyzed.Simulation and experimental results verify the performance gain of the proposed scheme compared with benchmarks.
基金co-supported by the National Natural Science Foundation of China(Nos.U23A20279,62271094)the National Key R&D Program of China(No.SQ2023YFB2500024)+2 种基金the Science Foundation for Youths of Natural Science Foundation of Sichuan Provincial,China(No.2022NSFSC0936)the China Postdoctoral Science Foundation(No.2022M720666)the Open Fund of Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications,China(No.BDIC-2023-B-002).
文摘This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The base station(BS)provides short packet services to ground users using the non-orthogonal multiple access(NOMA)protocol through UAV-RIS,while preventing eavesdropper attacks.To optimize SEE,a joint optimization is performed concerning power allocation,UAV position,decoding order,and RIS phase shifts.An iterative algorithm based on block coordinate descent is proposed for mixed-integer non-convex SEE optimization problem.The original problem is decomposed into three sub-problems,solved alternately using successive convex approximation(SCA),quadratic transformation,penalty function,and semi-definite programming(SDP).Simulation results demonstrate the performance of the UAV-RIS-enhanced short-packet system under different parameters and verify the algorithm’s convergence.Compared to benchmark schemes such as orthogonal multiple access,long packet communication,and sum SEE,the proposed UAV-RIS-enhanced short-packet scheme achieves the higher minimum user’s SEE.
基金supported by the National Key Research and Develop-ment Program of China(2019YFB1803400).
文摘1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their incredible speed of development and wide-reaching impact,mobile communications serve as the cornerstone of the Internet of Everything,profoundly reshaping human cognitive abilities and ways of thinking.Furthermore,mobile communications are altering the patterns of production and life,driving leaps in productivity quality,and strongly promot-ing innovation within human civilization.
基金supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-035Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2.
文摘In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.
基金supported by the Ministry of Education in China Project of Humanities and Social Science(Grant No.23YJC860005).
文摘1.Introduction Sports mega-events should transcend mere celebrations and generate lasting societal impacts.The“post-Olympic”era legacies often become focal points of global interest.1,2 As the apex of international multi-sport events,the Olympics offer an unparalleled opportunity to shift societal health behaviors.When spectators are motivated to engage in sports and elevate their understanding of athletics through the event,it constitutes the Olympics’most significant legacy.3 The 2024 Paris Olympics emerged as a global showcase for pioneering health communication strategies,utilizing digital media to advance physical fitness and sports knowledge.This article delves into the digital health communication strategies employed during the Paris Olympics and proposes policy recommendations to amplify global public health benefits.
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
基金supported by the National Natural Science Foundation of China under Grants No.61671367 and 62471381the Research Foundation of Science and Technology on Communication Networks Laboratory,and the National Key Laboratory of Wireless Communications Foundation under Grant No.IFN202401.
文摘Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.