Dear Editor,Coma, the vegetative state (VS), and the minimally- conscious state (MCS), often collectively referred to as disorders of consciousness (DOCs), typically occur after severe traumatic or non-traumatic...Dear Editor,Coma, the vegetative state (VS), and the minimally- conscious state (MCS), often collectively referred to as disorders of consciousness (DOCs), typically occur after severe traumatic or non-traumatic brain injury [1]. The boundary between awareness and unawareness remains elusive, making it difficult to correctly distinguish MCS from VS patients. It is possible to employ noninvasive neuroimaging techniques, such as functional MRI (fMRI) [2] to assess residual cognitive processing as well as consciousness. However, the causal link between neural activity in specific brain areas and specific behavioral tasks is hard to dissect using fMRI [3]. Therefore, detecting residual cognitive function and consciousness in patients surviving severe brain injury remains extremely challenging.展开更多
Visual fixation is an item in the visual function subscale of the Coma Recovery Scale-Revised (CRS-R). Sometimes clinicians using the behavioral scales find it difficult to detect because of the motor impairment in ...Visual fixation is an item in the visual function subscale of the Coma Recovery Scale-Revised (CRS-R). Sometimes clinicians using the behavioral scales find it difficult to detect because of the motor impairment in patients with disorders of consciousness (DOCs). Brain- computer interface (BCI) can be used to improve clinical assessment because it directly detects the brain response to an external stimulus in the absence of behavioral expres- sion. In this study, we designed a BCI system to assist the visual fixation assessment of DOC patients. The results from 15 patients indicated that three showed visual fixation in both CRS-R and BCI assessments and one did not show such behavior in the CRS-R assessment but achieved significant online accuracy in the BCI assessment. The results revealed that electroencephalography-based BCI can detect the brain response for visual fixation. Therefore, the proposed BCI may provide a promising method for assisting behavioral assessment using the CRS-R.展开更多
基金supported by the Guangdong Provincial Natural Science Foundation(2015A030313609)the Guangzhou Municipal Project for Science and Technology Foundation(201508020253)
文摘Dear Editor,Coma, the vegetative state (VS), and the minimally- conscious state (MCS), often collectively referred to as disorders of consciousness (DOCs), typically occur after severe traumatic or non-traumatic brain injury [1]. The boundary between awareness and unawareness remains elusive, making it difficult to correctly distinguish MCS from VS patients. It is possible to employ noninvasive neuroimaging techniques, such as functional MRI (fMRI) [2] to assess residual cognitive processing as well as consciousness. However, the causal link between neural activity in specific brain areas and specific behavioral tasks is hard to dissect using fMRI [3]. Therefore, detecting residual cognitive function and consciousness in patients surviving severe brain injury remains extremely challenging.
基金supported by the National Key Research and Development Program of China (2017YFB1002505)the National Natural Science Foundation of China (61633010, 91420302, and 61503143)+1 种基金the Natural Science Foundation of Guangdong Province, China (2014A030312005 and 2014A030310244)the Pearl River S&T Nova Program of Guangzhou Municipality, China (201710010038)
文摘Visual fixation is an item in the visual function subscale of the Coma Recovery Scale-Revised (CRS-R). Sometimes clinicians using the behavioral scales find it difficult to detect because of the motor impairment in patients with disorders of consciousness (DOCs). Brain- computer interface (BCI) can be used to improve clinical assessment because it directly detects the brain response to an external stimulus in the absence of behavioral expres- sion. In this study, we designed a BCI system to assist the visual fixation assessment of DOC patients. The results from 15 patients indicated that three showed visual fixation in both CRS-R and BCI assessments and one did not show such behavior in the CRS-R assessment but achieved significant online accuracy in the BCI assessment. The results revealed that electroencephalography-based BCI can detect the brain response for visual fixation. Therefore, the proposed BCI may provide a promising method for assisting behavioral assessment using the CRS-R.