<span style="font-family:Verdana;">Riparian forests ecosystems play significant role in biodiversity conservation and provision of ecosystem goods and services which support local livelihoods. However,...<span style="font-family:Verdana;">Riparian forests ecosystems play significant role in biodiversity conservation and provision of ecosystem goods and services which support local livelihoods. However, riparian ecosystems are threatened by degradation attributed to anthropogenic activities. Understanding the interaction between anthropogenic activities and socio-economic factors, and their associated impact on riparian degradation is essential for designing appropriate management strategies for these ecosystems. This study assessed the socio-economic factors that drive degradation and their implication on conservation of River Lumi riparian ecosystem. Semi-structured questionnaires, Focus Group Discussion (FGDs) and key informant interviews were used to collect the data. The findings indicate that crop farming and livestock production were the main sources of livelihood practiced by 84% and 70% of the households respectively. Consequently, agricultural intensification resulting from increased demand for agricultural commodities (33%), over-grazing coupled with influx of livestock from private ranches and neighbouring pastoralist Maasai community (20%), and deforestation fuelled by population increase (17%) were the main drivers of degradation in River Lumi riparian ecosystem. The findings indicate that about 91% of the adjacent communities are dependent on River Lumi for their sustenance and their livelihoods will be affected by continued degradation of the riparian ecosystem;thus there is need for development of appropriate management strategies including sustainable livelihood systems to conserve River Lumi riparian ecosystem.</span>展开更多
The structure and species composition of undisturbed natural forests serve as benchmarks for understanding forest carbon storage potential for reduced carbon emissions. Even though Kenya is seeking to stabilize forest...The structure and species composition of undisturbed natural forests serve as benchmarks for understanding forest carbon storage potential for reduced carbon emissions. Even though Kenya is seeking to stabilize forest cover, reverse degradation and increase forest cover through mechanisms such as REDD+, there is relatively little information on inherent forest carbon storage potential or its response to disturbance. Comparative studies were undertaken in three remnant fragments of indigenous forests in Taita Hills, Kenya to characterize the structure and forest carbon storage potential of undisturbed, moderately and heavily disturbed sites within these forests. The sensitivity of forest carbon storage estimates to different methods of tree biomass estimation were also examined, including estimates which used DBH, tree height and wood density from extracted tree cores. Disturbance altered the forest structure, reduced species diversity and decreased the capacity of the forests to sequester carbon. The forests’ capacity to sequester carbon reduced by between 9.2% and 70.7% depending on the site (forest fragment) and level of disturbance. Models with DBH and wood density gave higher quantities of carbon of between 0.9% and 44.4% for sites exhibiting different levels of disturbance. The present results suggest that disturbance had strong influence on forest structure, species diversity and carbon stocks and therefore maintaining the forests’ ecological integrity over the long-term may prove difficult if the frequency and intensity of disturbance increases. Moreover, development and implementation of effective mitigation strategies to reduce carbon emissions will require the use of local biomass models since they are accurate.展开更多
Riparian forests minimize impacts of land degradation on stream ecosystems and provide direct and indirect benefits to people. However, these ecosystems are threatened by degradation and deforestation attributed to la...Riparian forests minimize impacts of land degradation on stream ecosystems and provide direct and indirect benefits to people. However, these ecosystems are threatened by degradation and deforestation attributed to land use changes. River Lumi riparian ecosystem in Taita Taveta County in Kenya has experienced rapid and extensive land use changes over the past three decades in response to economic, institutional and demographic factors. There is growing concern of riparian degradation attributed to land use change with far reaching implications on local livelihoods. A study was conducted to examine the patterns </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of land use and land cover change</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> along River Lumi riparian ecosystem between 1987 and 2019. The aim of the study was to ascertain the impacts of land use and land cover change on local livelihoods. Landsat images were used to assess land use and land cover change while socio-economic data was collected from 353 households in Njukini, Chala and Mboghoni located in the upper, middle and lower sections of River Lumi ecosystem respectively. Research evidence authenticated that the area under farmlands, settlement and water body increased by 20.5%, 112.1% and 2.3% respectively between 1987 and 2019 while area under forest patches, grazing land and riverine vegetation decreased by 52.7%, 3.0%, and 36.6% respectively. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The increase in population in surrounding areas coupled with encroachment of the riparian areas for crop farming and livestock grazing resulted to loss of riparian forest patches/vegetation and associated biodiversity with negative implications on household livelihoods. The implication of these results is the need for land use regulations and management interventions at the County level to arrest further encroachment of River Lumi riparian ecosystem and consequent loss of biodiversity and livelihoods.展开更多
文摘<span style="font-family:Verdana;">Riparian forests ecosystems play significant role in biodiversity conservation and provision of ecosystem goods and services which support local livelihoods. However, riparian ecosystems are threatened by degradation attributed to anthropogenic activities. Understanding the interaction between anthropogenic activities and socio-economic factors, and their associated impact on riparian degradation is essential for designing appropriate management strategies for these ecosystems. This study assessed the socio-economic factors that drive degradation and their implication on conservation of River Lumi riparian ecosystem. Semi-structured questionnaires, Focus Group Discussion (FGDs) and key informant interviews were used to collect the data. The findings indicate that crop farming and livestock production were the main sources of livelihood practiced by 84% and 70% of the households respectively. Consequently, agricultural intensification resulting from increased demand for agricultural commodities (33%), over-grazing coupled with influx of livestock from private ranches and neighbouring pastoralist Maasai community (20%), and deforestation fuelled by population increase (17%) were the main drivers of degradation in River Lumi riparian ecosystem. The findings indicate that about 91% of the adjacent communities are dependent on River Lumi for their sustenance and their livelihoods will be affected by continued degradation of the riparian ecosystem;thus there is need for development of appropriate management strategies including sustainable livelihood systems to conserve River Lumi riparian ecosystem.</span>
文摘The structure and species composition of undisturbed natural forests serve as benchmarks for understanding forest carbon storage potential for reduced carbon emissions. Even though Kenya is seeking to stabilize forest cover, reverse degradation and increase forest cover through mechanisms such as REDD+, there is relatively little information on inherent forest carbon storage potential or its response to disturbance. Comparative studies were undertaken in three remnant fragments of indigenous forests in Taita Hills, Kenya to characterize the structure and forest carbon storage potential of undisturbed, moderately and heavily disturbed sites within these forests. The sensitivity of forest carbon storage estimates to different methods of tree biomass estimation were also examined, including estimates which used DBH, tree height and wood density from extracted tree cores. Disturbance altered the forest structure, reduced species diversity and decreased the capacity of the forests to sequester carbon. The forests’ capacity to sequester carbon reduced by between 9.2% and 70.7% depending on the site (forest fragment) and level of disturbance. Models with DBH and wood density gave higher quantities of carbon of between 0.9% and 44.4% for sites exhibiting different levels of disturbance. The present results suggest that disturbance had strong influence on forest structure, species diversity and carbon stocks and therefore maintaining the forests’ ecological integrity over the long-term may prove difficult if the frequency and intensity of disturbance increases. Moreover, development and implementation of effective mitigation strategies to reduce carbon emissions will require the use of local biomass models since they are accurate.
文摘Riparian forests minimize impacts of land degradation on stream ecosystems and provide direct and indirect benefits to people. However, these ecosystems are threatened by degradation and deforestation attributed to land use changes. River Lumi riparian ecosystem in Taita Taveta County in Kenya has experienced rapid and extensive land use changes over the past three decades in response to economic, institutional and demographic factors. There is growing concern of riparian degradation attributed to land use change with far reaching implications on local livelihoods. A study was conducted to examine the patterns </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of land use and land cover change</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> along River Lumi riparian ecosystem between 1987 and 2019. The aim of the study was to ascertain the impacts of land use and land cover change on local livelihoods. Landsat images were used to assess land use and land cover change while socio-economic data was collected from 353 households in Njukini, Chala and Mboghoni located in the upper, middle and lower sections of River Lumi ecosystem respectively. Research evidence authenticated that the area under farmlands, settlement and water body increased by 20.5%, 112.1% and 2.3% respectively between 1987 and 2019 while area under forest patches, grazing land and riverine vegetation decreased by 52.7%, 3.0%, and 36.6% respectively. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The increase in population in surrounding areas coupled with encroachment of the riparian areas for crop farming and livestock grazing resulted to loss of riparian forest patches/vegetation and associated biodiversity with negative implications on household livelihoods. The implication of these results is the need for land use regulations and management interventions at the County level to arrest further encroachment of River Lumi riparian ecosystem and consequent loss of biodiversity and livelihoods.