Bi_2Se_3 was studied as a novel sodium-ion battery anode material because of its high theoretical capacity and high intrinsic conductivity. Integrated with carbon,Bi_2Se_3/C composite shows excellent cyclic performanc...Bi_2Se_3 was studied as a novel sodium-ion battery anode material because of its high theoretical capacity and high intrinsic conductivity. Integrated with carbon,Bi_2Se_3/C composite shows excellent cyclic performance and rate capability. For instance, the Bi_2Se_3/C anode delivers an initial capacity of 527 mAh g^(-10) at 0.1 A g^(-1) and maintains 89% of this capacity over 100 cycles. The phase change and sodium storage mechanism are also carefully investigated.展开更多
primarily driven by advancements in technology,changes in healthcare delivery,and a deeper understanding of disease processes.Advancements in technology have revolutionized patient monitoring,diagnosis,and treatment i...primarily driven by advancements in technology,changes in healthcare delivery,and a deeper understanding of disease processes.Advancements in technology have revolutionized patient monitoring,diagnosis,and treatment in the critical care setting.From minimally invasive procedures to advances imaging techniques,clinicians now have access to a wide array of tools to assess and manage critically ill patients more effectively.In this editorial we comment on the review article published by Padte S et al wherein they concisely describe the latest developments in critical care medicine.展开更多
基金the support from TcSUH as the TcSUH Robert A. Welch Professorships on High Temperature Superconducting (HTSg) and Chemical Materials (E-0001)the support from the National Science Foundation under grant number DMR-1410936
文摘Bi_2Se_3 was studied as a novel sodium-ion battery anode material because of its high theoretical capacity and high intrinsic conductivity. Integrated with carbon,Bi_2Se_3/C composite shows excellent cyclic performance and rate capability. For instance, the Bi_2Se_3/C anode delivers an initial capacity of 527 mAh g^(-10) at 0.1 A g^(-1) and maintains 89% of this capacity over 100 cycles. The phase change and sodium storage mechanism are also carefully investigated.
文摘primarily driven by advancements in technology,changes in healthcare delivery,and a deeper understanding of disease processes.Advancements in technology have revolutionized patient monitoring,diagnosis,and treatment in the critical care setting.From minimally invasive procedures to advances imaging techniques,clinicians now have access to a wide array of tools to assess and manage critically ill patients more effectively.In this editorial we comment on the review article published by Padte S et al wherein they concisely describe the latest developments in critical care medicine.