The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effe...The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.展开更多
A 1% Fe-30% Hf over yttria-stabilized zirconia catalyst in combination with novel plasma-assisted activation techniques for a direct partial oxidation of methane to methanol was tested using dielectric barrier dischar...A 1% Fe-30% Hf over yttria-stabilized zirconia catalyst in combination with novel plasma-assisted activation techniques for a direct partial oxidation of methane to methanol was tested using dielectric barrier discharge plasma at ambient temperature and atmospheric pressure. However, instead of methanol, the reaction products were dominated by HE, CO, CO2, C2, and H2O. A catalytically activated plasma process increased the production of methanol compared with a noncatalytic plasma process. The maximum selectivity of methanol production was achieved using a catalyst that was treated at higher applied power.展开更多
Plasma methane (CH_4) conversion in gliding arc discharge was examined. Theresult data of experiments regarding the performance of gliding arc discharge were presented in thispaper. A simulation which is consisted som...Plasma methane (CH_4) conversion in gliding arc discharge was examined. Theresult data of experiments regarding the performance of gliding arc discharge were presented in thispaper. A simulation which is consisted some chemical kinetic mechanisms has been provided toanalyze and describe the plasma process. The effect of total gas flow rate and input frequencyrefers to power consumption have been studied to evaluate the performance of gliding arc plasmasystem and the reaction mechanism of decomposition. Experiment results indicated that the maximumconversion of CH_4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction wasoccurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene(C_2H_2). The plasma reaction of methane conversion was exothermic reaction which increased theproduct stream temperature around 30-50℃.展开更多
Decomposition of chlorinated hydrocarbons, CCl4 and CHCl3, in gliding plasma was examined. The effects of initial concentrations, total gas flow rates, and power consumption have been investigated. The conversion resu...Decomposition of chlorinated hydrocarbons, CCl4 and CHCl3, in gliding plasma was examined. The effects of initial concentrations, total gas flow rates, and power consumption have been investigated. The conversion result was relatively high. It reached 80% for CCl4 and 97% for CHCl3. Using atmospheric air as the carrier gas, the plasma reaction occurred at exothermic reaction and the main products were CO2, CO, and Cl2. Transformation into CCl4 was also detected for CHCl3 decomposition reaction. The conversion of CCh and CHCl3 were increased with the increasing applied frequency and decreasing total gas flow rate.展开更多
The research outlined here includes a study of methanol production from direct methane conversion by means of thermal and plasma method. The kinetic study, derived from thermal-based approach, was carried out to inves...The research outlined here includes a study of methanol production from direct methane conversion by means of thermal and plasma method. The kinetic study, derived from thermal-based approach, was carried out to investigate thoroughly the possible intermediate species likely to be presented in the process. A set of plasma experiments was undertaken by using dielectric barrier discharge (DBD), classified as non-thermal plasma, done at atmospheric pressure and room temperature. Plasma proc- ess yields more methanol than thermal process at the same methane conversion rates and methane to oxygen feed ratios. Oxidation reaction of thermal process resulted CO and CO2 as the most dominant products and the selectivity reached 19% and 68%, respectively. Moreover, more CO and less CO2 were produced in plasma process than in thermal process. The selectivity of CO and CO2 by plasma was 47% and 20%, respectively. Ethane (C2H6) was detected as the only higher hydrocarbon with a signifi- cant concentration. The concentration of ethane reached 9% of the total products in plasma process and 17% in thermal process. The maximum selectivity of methanol, the target material of this research, was 12% obtained by plasma method and less than 5% by thermal process. In some certain points, the kinetic model closely matched with the experimental results.展开更多
文摘The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.
基金Project supported bythe National Research Laboratory Programof the Korea Ministry of Science and Technology
文摘A 1% Fe-30% Hf over yttria-stabilized zirconia catalyst in combination with novel plasma-assisted activation techniques for a direct partial oxidation of methane to methanol was tested using dielectric barrier discharge plasma at ambient temperature and atmospheric pressure. However, instead of methanol, the reaction products were dominated by HE, CO, CO2, C2, and H2O. A catalytically activated plasma process increased the production of methanol compared with a noncatalytic plasma process. The maximum selectivity of methanol production was achieved using a catalyst that was treated at higher applied power.
文摘Plasma methane (CH_4) conversion in gliding arc discharge was examined. Theresult data of experiments regarding the performance of gliding arc discharge were presented in thispaper. A simulation which is consisted some chemical kinetic mechanisms has been provided toanalyze and describe the plasma process. The effect of total gas flow rate and input frequencyrefers to power consumption have been studied to evaluate the performance of gliding arc plasmasystem and the reaction mechanism of decomposition. Experiment results indicated that the maximumconversion of CH_4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction wasoccurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene(C_2H_2). The plasma reaction of methane conversion was exothermic reaction which increased theproduct stream temperature around 30-50℃.
文摘Decomposition of chlorinated hydrocarbons, CCl4 and CHCl3, in gliding plasma was examined. The effects of initial concentrations, total gas flow rates, and power consumption have been investigated. The conversion result was relatively high. It reached 80% for CCl4 and 97% for CHCl3. Using atmospheric air as the carrier gas, the plasma reaction occurred at exothermic reaction and the main products were CO2, CO, and Cl2. Transformation into CCl4 was also detected for CHCl3 decomposition reaction. The conversion of CCh and CHCl3 were increased with the increasing applied frequency and decreasing total gas flow rate.
基金the National Research Laboratory Program of the Korea Ministry of Science and Technology
文摘The research outlined here includes a study of methanol production from direct methane conversion by means of thermal and plasma method. The kinetic study, derived from thermal-based approach, was carried out to investigate thoroughly the possible intermediate species likely to be presented in the process. A set of plasma experiments was undertaken by using dielectric barrier discharge (DBD), classified as non-thermal plasma, done at atmospheric pressure and room temperature. Plasma proc- ess yields more methanol than thermal process at the same methane conversion rates and methane to oxygen feed ratios. Oxidation reaction of thermal process resulted CO and CO2 as the most dominant products and the selectivity reached 19% and 68%, respectively. Moreover, more CO and less CO2 were produced in plasma process than in thermal process. The selectivity of CO and CO2 by plasma was 47% and 20%, respectively. Ethane (C2H6) was detected as the only higher hydrocarbon with a signifi- cant concentration. The concentration of ethane reached 9% of the total products in plasma process and 17% in thermal process. The maximum selectivity of methanol, the target material of this research, was 12% obtained by plasma method and less than 5% by thermal process. In some certain points, the kinetic model closely matched with the experimental results.