The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de...The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.展开更多
The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures i...The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures is demanded. Security associations have analysed that most assaults came along with explosion and impact scenarios, which amount in 80% of assaults. Consequently, these are the extraordinary loads the structures have to be planned and designed for. To carry out such an engineering job, the engineer has to be educated in multiple disciplines as physics, material science , continuum mechanics, numerical mechanics, testing, structural engineering and related specific fields as wave propagation etc. In this paper we will concentrate on the subjects of numerical simulation and testing.展开更多
GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and int...GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and integration of large amounts of geographic information to ensure success. This can include a wide range of information such as detailed design drawings originating from CAD solutions, detailed mapping, air photography, geological investigations, population information, traffic flows and environmental models. Although there are some similarities between CAD and GIS there are many differences. The most fundamental difference is that GIS mode is the world as it exists, whereas CAD models artifacts yet to be produced. As a result the data manipulated by a GIS is an order of magnitude larger and more complex than CAD systems have to deal with, and the nature of the data, its sources and its uses are quite different. In this paper, the selected area was Nahrain University. Many data were saved on the site map as a transparence layers built by using AutoCAD (2006). Then a digital library was built for the selected area and many data were saved on the site map as a themes built by using ArcView software.展开更多
El-Ashmonein is a significant archaeological site with different buildings from various eras. Between the villages of El-Idara and El-Ashmonein are there mains of Hermopolis, one of the ancient Egyptian metropolis cap...El-Ashmonein is a significant archaeological site with different buildings from various eras. Between the villages of El-Idara and El-Ashmonein are there mains of Hermopolis, one of the ancient Egyptian metropolis capitals of the fifteenth century of Upper Egypt, called the hare. The buildings in this archaeological site are exposed to many causes of destruction and damage. The remaining structures and granite free standing columns in this area are suffered from plenty of geo-environmental and geotechnical problems. The main objectives of this study are 1) to assess the current state of preservation of this important archaeological site, especially the basilica church with its free standing huge columns, 2) to analyze the different actions which cause the destruction of the archaeological site, in particular the old flash floods and earthquakes, and 3) to identify the geochemical and engineering properties of the construction materials of the granitic columns and other limestone structures of the basilica church by using different kind of sophisticated analytical and diagnostic tools and methods. The multi-criteria analysis allowed the integration of several elements for mapping the vulnerable zones. Results revealed that about 80% of the study area was exposed to high and medium old floods vulnerability because of the vicinity to the Nile River. The structural and non-structural measures recommended in this research will help the decision makers and planners to effectively develop strategies for future site management, intervention retrofitting and rehabilitation of this unique archaeological site.展开更多
Based on conventional discrete element method, the idea and calculating method of dynamic discrete element (DDEM) was proposed, and a relevant program was developed. The application of the method is presented in rock ...Based on conventional discrete element method, the idea and calculating method of dynamic discrete element (DDEM) was proposed, and a relevant program was developed. The application of the method is presented in rock mechanics and engineering, which indicates that the method can be widely used in dynamic response and stability analysis of jointed rockmass under dynamic load. [展开更多
This paper presents experimental investigation for particles breakage for natural sand. The particle breakage was induced by subjecting the sample to one dimensional compression. Grain size analyses were performed bef...This paper presents experimental investigation for particles breakage for natural sand. The particle breakage was induced by subjecting the sample to one dimensional compression. Grain size analyses were performed before and after induced breakage. Thereafter, the sand shear strength parameters were assessed using direct shear box tests and the coefficient of permeability was assessed using constant head permeameter. Examining the obtained results revealed that the amount of breakage due to one dimensional compression was of order higher than the amount occurring during direct shear test. Peak shear strength parameters decreased with the particles breakage increasing. Moreover, dilation angle of shear strength pronouncedly decreases with the amount of particles breakage increasing. Crushing has obvious effect on the evaluated coefficient of permeability.展开更多
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de...A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.展开更多
Construction projects are among the riskiest projects, which require the application of the right rules and to abide by the proper safety standards. Thus, this study aims to study the impact of COVID-19 on the constru...Construction projects are among the riskiest projects, which require the application of the right rules and to abide by the proper safety standards. Thus, this study aims to study the impact of COVID-19 on the construction and engineering companies due to the Corona pandemic in the Gaza Strip, and introducing the means used in dealing with this pandemic and how to avoid, limit and deal with it. And to shed light on the most important obstacles and challenges facing the construction sector in the light of the outbreak of the epidemic. To achieve this, a cross-sectional study based on an online questionnaire was conducted by Google Forms. Then, the data collected was analyzed using the thematic analysis approach. The results show that best procedures to mitigate the impact of this epidemic and to prioritize the safety and health of employees in contracting and engineering companies, to provide a safe work environment and developing plans to confront the spread of injury in the work-environment. The study recommends that government may provide financial support to companies and reduce taxes imposed on them in order to be able to confront this pandemic.展开更多
This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the w...This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the west to the east, following a natural slope. The overflow of this stream causes serious flooding, leading to the total cutting of the road and the isolation of the population. These floods had tragic consequences, resulting in two losses of human life. To regulate the water level, prevent flooding, and protect agricultural and urban areas from overflows, the Senegalese authorities initiated the project to build the Keur Bara KAIRE dike in 2004, but unfortunately, the latter gave way in 2017. The geotechnical analysis was carried out on samples taken from various points on the site, revealing that the terrain is mainly composed of fine sand and the embankment is made with clayey sand. Morphometric and hydrological investigations highlight that the watershed of the Keur Bara KAIRE dike covers an area of 3.72 km2, with a projected flow of 54.99 m3/s. The resizing of the dike revealed the following data: a length of 132 meters and a height of 3 meters. The spillway is 52.99 meters long with a reservoir height of 1.22 meters. The bay walls have a thickness of 50 cm and the embankments have a slope of 1/2 upstream and downstream. The stability calculation on the broken dike reveals a sliding safety factor (FSG) of 1.84 which complies with the standard and an overturning safety factor (FSR) of 0.13 which is not verified. The surface of the watershed which is equal to 3.72 km2, also the smallest height of precipitation is equal to 234.9 mm and the largest is 664.4 mm, according to the ORSTOM and CIEH methods for hydraulic calculations.展开更多
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en...Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.展开更多
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext...Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.展开更多
A carcass is the innermost layer of a deep-sea unbonded flexible pipe,which is in direct contact with the gas/liquid-solid multi-phase flow.Considering that stress-accelerated erosion is common for carcasses,this stud...A carcass is the innermost layer of a deep-sea unbonded flexible pipe,which is in direct contact with the gas/liquid-solid multi-phase flow.Considering that stress-accelerated erosion is common for carcasses,this study proposes a general model and simulation method for stress-accelerated erosion(SE)of carcasses under external water pressure.First,an SE model suitable for 316 stainless steel was developed,which was then used for stress-erosion simulation for an external pressurized carcass,and the solid domain,fluid domain and rough inner surface of the carcass were carefully considered.Moreover,a simplified model(equivalent smooth pipe)was also established on the basis of the main geometric characteristics of the carcass,and the stress-erosion characteristics under different operating conditions,including the effects of the elastic stress level,flow velocity,particle diameter and concentration,were carefully compared,and the key factors governing the elastic stress-erosion of the carcass were discussed.Finally,a modified geometry factor(GF)for carcasses was proposed considering the stress acceleration effect.展开更多
Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as ...Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as a pavement.It is interested primarily in the behavior of two types of bitumen 40/50 modified by the addition of two varieties of rubber fine powders of different grading,resulting from the crushing of the rubbery products intended for the clothes industry of soles of shoes.The objective of the experimentation is to study the influence of the added polymer on the physical properties of the ordinary road bitumen with the incorporation of the fine powder.The experimental approach is carried out using the two tests of characterization of the bitumen i.e.the softening point test and the penetration test which remain the most used to define and classify the road bitumen.It will be noted however,that the experimental investigation which is based on several tests according to the type and the content of fine powders,leads on a whole of interesting correlations.展开更多
Reinforced concrete buildings may experience partial damage after earthquakes or some human-induced actions.A decision about the future of those buildings requires detailed analyses,while determining the dynamic chara...Reinforced concrete buildings may experience partial damage after earthquakes or some human-induced actions.A decision about the future of those buildings requires detailed analyses,while determining the dynamic characteristics of a real building in its pre-and post-event situations can guide the analysis.Hence,this study was planned to monitor the dynamic response of an existing six-story,reinforced concrete building with regard to structural damage.The modal characteristics of the original building were initially determined by the use of operational modal analysis.Next,three steps of progressive structural damage were applied to the building.The first damage level peeled off the clear cover of a beam and three columns on a corner of the building’s ground floor.whereas the second and third levels completely razed the damaged columns.Operational modal analysis was repeated at each damage stage to extract the frequencies and detailed mode shapes.Moreover,numerical models based on the finite element method were constructed to confirm the obtained experimental findings.The well-agreed experimental and numerical findings revealed the damage sensitivity of the building’s dynamic response.The quantified amount of frequency change favored a retrofit of the partially damaged buildings rather than their replacement.展开更多
Infill walls that are considered for the design phase of RC buildings completely change damage mechanisms.In such cases,field studies conducted after destructive earthquakes show that the damage is advanced,especially...Infill walls that are considered for the design phase of RC buildings completely change damage mechanisms.In such cases,field studies conducted after destructive earthquakes show that the damage is advanced,especially in structures without infilling walls on the ground floors.The same situation was observed in destructive earthquakes such as the 2023 Kahramanmaras earthquake.The main goal of this study is to examine the effect of the infill wall situation on the behavior of structures in earthquakes and to examine how the near-fault effect will change the damage levels of structures with and without infill walls.In this context,the effect of the infill wall situation was examined by utilizing the Kahramanmaras earthquake data.As a result of the study,it was observed that designs with infill wall building models gave better results compared to the other models.The near fault effect was observed to be more dominant in building models without infill walls and with open stories.In conclusion,the infill walls was positively affected with regard to the near fault effect and the features of the building,such as period values,ground story behavior,story shear forces,column moment values,inter-story drift ratio,and base shear forces on ground floors,and increased base shear force.展开更多
The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal tr...The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal treatment on the shear behavior of sedimentary sandstone and igneous granite,which are abundant in the Earth's crust.Direct shear tests were conducted on rock joints at room temperature(RT),250℃,and 500℃.The results show that the joints in sandstone and granite exhibit improved compressive and shear strength up to a temperature threshold of 200℃–350℃,followed by significant weakening beyond this range.This study investigated key parameters,including normal and shear stiffness,maximum joint closure,peak and residual shear strengths,internal friction angle,dilation angle,and cohesion.The compressive behavior of both rock types followed a modifiedBandis's equation.The peak shear strength followed Patton's bilinear and Jaeger's nonlinear failure criteria more accurately than the Mohr–Coulomb criterion.The results of this study provide valuable insights into the temperature-dependent behavior of sandstone and granite joints under compressive and shear loads,and their interoperation was strongly dependent on the mineralogical and structural components of the two rock types.These results have advanced our understanding of the temperature-dependent behavior of rock fractures,improving the safety of underground structures under thermal effects.展开更多
The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations...The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations traversing shallow waters,where ice-berg keels may reach the seabed,potentially damaging subsea structures.Consequently,costly and time-intensive iceberg manage-ment operations,such as towing and rerouting,are undertaken to safeguard subsea and offshore infrastructure.This study,therefore,explores the application of extra tree regression(ETR)as a robust solution for estimating iceberg draft,particularly in the preliminary phases of decision-making for iceberg management projects.Nine ETR models were developed using parameters influencing iceberg draft.Subsequent analyses identified the most effective models and significant input variables.Uncertainty analysis revealed that the superior ETR model tended to overestimate iceberg drafts;however,it achieved the highest precision,correlation,and simplicity in estimation.Comparison with decision tree regression,random forest regression,and empirical methods confirmed the superior perfor-mance of ETR in predicting iceberg drafts.展开更多
The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric...The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric and radiometric performance using georeferenced,high-reflectivity foil targets.The method enables precise extraction of target centers and correction of systematic georeferencing errors through 3D transformation.The approach was applied at the Tora Cement Factory in Cairo,Egypt—an industrial site with complex topography—using a DJI Matrice 300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor and Zenmuse P1 photogrammetric camera.Three test flights were performed at altitudes of 50 m(nadir and oblique)and 70 m(oblique),with a high-resolution Structure-from-Motion(SfM)point cloud generated for reference.After transformation,the global RMSE of the LiDAR dataset was reduced to approximately 2.8∼3.2 cm,improving upon the raw uncorrected accuracy of up to 4.6 cm.Surface-wise comparisons showed RMSEs of 3.1 cm on flat areas,3.8 cm on rugged terrain,and 4.5 cm on vertical structures.Additionally,the RGB data embedded in the LiDAR point cloud exhibited a systematic spatial offset between 18 and 43 cm,with an average internal standard deviation near 5 cm,indicating a potential limitation for radiometric applications.The proposed method offers a cost-effective,accurate,and repeatable solution for UAV LiDAR validation and supports operational deployment,quality assurance,and system calibration in real-world scenarios.展开更多
The study aims to develop an empirical model to predict the rainfall intensity in Al-Diwaniyah City,Iraq,according to a statistical analysis based on probability and the specific rainfall return period.Rainfall data w...The study aims to develop an empirical model to predict the rainfall intensity in Al-Diwaniyah City,Iraq,according to a statistical analysis based on probability and the specific rainfall return period.Rainfall data were collected daily for 25 years starting in 2000.Daily rainfall data were converted to rainfall intensity for five duration periods ranging from one to five hours.The extreme values were checked,and data that deviated from the group trend were removed for each period,and then arranged in descending order using the Weibull formula to calculate the probability.Statistically,the model performance with a return period of two years is considered good when compared with observed results and other methods such as Talbot and Sherman with a coefficient of determination(R2)>0.97 and Nash-Sutcliffe efficiency(NSE)>0.80.The results showed that a mathematical equation was obtained that describes the relationship between rainfall intensity,probability,and rainfall duration,which can be used for a confined return period with a 50% probability.Therefore,decision-makers can rely on the model to improve the performance of the city’s current drainage system during flood periods in the future.展开更多
The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of supp...The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results.展开更多
文摘The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.
文摘The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures is demanded. Security associations have analysed that most assaults came along with explosion and impact scenarios, which amount in 80% of assaults. Consequently, these are the extraordinary loads the structures have to be planned and designed for. To carry out such an engineering job, the engineer has to be educated in multiple disciplines as physics, material science , continuum mechanics, numerical mechanics, testing, structural engineering and related specific fields as wave propagation etc. In this paper we will concentrate on the subjects of numerical simulation and testing.
文摘GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and integration of large amounts of geographic information to ensure success. This can include a wide range of information such as detailed design drawings originating from CAD solutions, detailed mapping, air photography, geological investigations, population information, traffic flows and environmental models. Although there are some similarities between CAD and GIS there are many differences. The most fundamental difference is that GIS mode is the world as it exists, whereas CAD models artifacts yet to be produced. As a result the data manipulated by a GIS is an order of magnitude larger and more complex than CAD systems have to deal with, and the nature of the data, its sources and its uses are quite different. In this paper, the selected area was Nahrain University. Many data were saved on the site map as a transparence layers built by using AutoCAD (2006). Then a digital library was built for the selected area and many data were saved on the site map as a themes built by using ArcView software.
文摘El-Ashmonein is a significant archaeological site with different buildings from various eras. Between the villages of El-Idara and El-Ashmonein are there mains of Hermopolis, one of the ancient Egyptian metropolis capitals of the fifteenth century of Upper Egypt, called the hare. The buildings in this archaeological site are exposed to many causes of destruction and damage. The remaining structures and granite free standing columns in this area are suffered from plenty of geo-environmental and geotechnical problems. The main objectives of this study are 1) to assess the current state of preservation of this important archaeological site, especially the basilica church with its free standing huge columns, 2) to analyze the different actions which cause the destruction of the archaeological site, in particular the old flash floods and earthquakes, and 3) to identify the geochemical and engineering properties of the construction materials of the granitic columns and other limestone structures of the basilica church by using different kind of sophisticated analytical and diagnostic tools and methods. The multi-criteria analysis allowed the integration of several elements for mapping the vulnerable zones. Results revealed that about 80% of the study area was exposed to high and medium old floods vulnerability because of the vicinity to the Nile River. The structural and non-structural measures recommended in this research will help the decision makers and planners to effectively develop strategies for future site management, intervention retrofitting and rehabilitation of this unique archaeological site.
基金Project(49772167)supported by National Natural Science Foundation of Chinaproject supported by Open Research Fund of Geotechnical Lab of Ministry of Territorial Resources of Chinaproject supported by Beijing Science Star Foundation
文摘Based on conventional discrete element method, the idea and calculating method of dynamic discrete element (DDEM) was proposed, and a relevant program was developed. The application of the method is presented in rock mechanics and engineering, which indicates that the method can be widely used in dynamic response and stability analysis of jointed rockmass under dynamic load. [
文摘This paper presents experimental investigation for particles breakage for natural sand. The particle breakage was induced by subjecting the sample to one dimensional compression. Grain size analyses were performed before and after induced breakage. Thereafter, the sand shear strength parameters were assessed using direct shear box tests and the coefficient of permeability was assessed using constant head permeameter. Examining the obtained results revealed that the amount of breakage due to one dimensional compression was of order higher than the amount occurring during direct shear test. Peak shear strength parameters decreased with the particles breakage increasing. Moreover, dilation angle of shear strength pronouncedly decreases with the amount of particles breakage increasing. Crushing has obvious effect on the evaluated coefficient of permeability.
基金supported by the National Natural Science Foundation of China (No. 40971046,41023003,40901039)the Project from the State Key Laboratory of Frozen Soil Engineering of China (No. 09SF102003)
文摘A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.
文摘Construction projects are among the riskiest projects, which require the application of the right rules and to abide by the proper safety standards. Thus, this study aims to study the impact of COVID-19 on the construction and engineering companies due to the Corona pandemic in the Gaza Strip, and introducing the means used in dealing with this pandemic and how to avoid, limit and deal with it. And to shed light on the most important obstacles and challenges facing the construction sector in the light of the outbreak of the epidemic. To achieve this, a cross-sectional study based on an online questionnaire was conducted by Google Forms. Then, the data collected was analyzed using the thematic analysis approach. The results show that best procedures to mitigate the impact of this epidemic and to prioritize the safety and health of employees in contracting and engineering companies, to provide a safe work environment and developing plans to confront the spread of injury in the work-environment. The study recommends that government may provide financial support to companies and reduce taxes imposed on them in order to be able to confront this pandemic.
文摘This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the west to the east, following a natural slope. The overflow of this stream causes serious flooding, leading to the total cutting of the road and the isolation of the population. These floods had tragic consequences, resulting in two losses of human life. To regulate the water level, prevent flooding, and protect agricultural and urban areas from overflows, the Senegalese authorities initiated the project to build the Keur Bara KAIRE dike in 2004, but unfortunately, the latter gave way in 2017. The geotechnical analysis was carried out on samples taken from various points on the site, revealing that the terrain is mainly composed of fine sand and the embankment is made with clayey sand. Morphometric and hydrological investigations highlight that the watershed of the Keur Bara KAIRE dike covers an area of 3.72 km2, with a projected flow of 54.99 m3/s. The resizing of the dike revealed the following data: a length of 132 meters and a height of 3 meters. The spillway is 52.99 meters long with a reservoir height of 1.22 meters. The bay walls have a thickness of 50 cm and the embankments have a slope of 1/2 upstream and downstream. The stability calculation on the broken dike reveals a sliding safety factor (FSG) of 1.84 which complies with the standard and an overturning safety factor (FSR) of 0.13 which is not verified. The surface of the watershed which is equal to 3.72 km2, also the smallest height of precipitation is equal to 234.9 mm and the largest is 664.4 mm, according to the ORSTOM and CIEH methods for hydraulic calculations.
文摘Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.
基金the University of Transport Technology under grant number DTTD2022-12.
文摘Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.
基金financially supported by the National Natural Science Foundation of China(Grant No.52301339)the Natural Science Foundation of Fujian Province(Grant No.2021J05004)+1 种基金the State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation,Tianjin University(Grant No.HESS-2402)the Fundamental Research Funds for the Central Universities(Grant No.20720240038).
文摘A carcass is the innermost layer of a deep-sea unbonded flexible pipe,which is in direct contact with the gas/liquid-solid multi-phase flow.Considering that stress-accelerated erosion is common for carcasses,this study proposes a general model and simulation method for stress-accelerated erosion(SE)of carcasses under external water pressure.First,an SE model suitable for 316 stainless steel was developed,which was then used for stress-erosion simulation for an external pressurized carcass,and the solid domain,fluid domain and rough inner surface of the carcass were carefully considered.Moreover,a simplified model(equivalent smooth pipe)was also established on the basis of the main geometric characteristics of the carcass,and the stress-erosion characteristics under different operating conditions,including the effects of the elastic stress level,flow velocity,particle diameter and concentration,were carefully compared,and the key factors governing the elastic stress-erosion of the carcass were discussed.Finally,a modified geometry factor(GF)for carcasses was proposed considering the stress acceleration effect.
文摘Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as a pavement.It is interested primarily in the behavior of two types of bitumen 40/50 modified by the addition of two varieties of rubber fine powders of different grading,resulting from the crushing of the rubbery products intended for the clothes industry of soles of shoes.The objective of the experimentation is to study the influence of the added polymer on the physical properties of the ordinary road bitumen with the incorporation of the fine powder.The experimental approach is carried out using the two tests of characterization of the bitumen i.e.the softening point test and the penetration test which remain the most used to define and classify the road bitumen.It will be noted however,that the experimental investigation which is based on several tests according to the type and the content of fine powders,leads on a whole of interesting correlations.
基金supported by the Scientific and Technological Research Council of Türkiye(TUBITAK)under Research Grant 116M254.
文摘Reinforced concrete buildings may experience partial damage after earthquakes or some human-induced actions.A decision about the future of those buildings requires detailed analyses,while determining the dynamic characteristics of a real building in its pre-and post-event situations can guide the analysis.Hence,this study was planned to monitor the dynamic response of an existing six-story,reinforced concrete building with regard to structural damage.The modal characteristics of the original building were initially determined by the use of operational modal analysis.Next,three steps of progressive structural damage were applied to the building.The first damage level peeled off the clear cover of a beam and three columns on a corner of the building’s ground floor.whereas the second and third levels completely razed the damaged columns.Operational modal analysis was repeated at each damage stage to extract the frequencies and detailed mode shapes.Moreover,numerical models based on the finite element method were constructed to confirm the obtained experimental findings.The well-agreed experimental and numerical findings revealed the damage sensitivity of the building’s dynamic response.The quantified amount of frequency change favored a retrofit of the partially damaged buildings rather than their replacement.
文摘Infill walls that are considered for the design phase of RC buildings completely change damage mechanisms.In such cases,field studies conducted after destructive earthquakes show that the damage is advanced,especially in structures without infilling walls on the ground floors.The same situation was observed in destructive earthquakes such as the 2023 Kahramanmaras earthquake.The main goal of this study is to examine the effect of the infill wall situation on the behavior of structures in earthquakes and to examine how the near-fault effect will change the damage levels of structures with and without infill walls.In this context,the effect of the infill wall situation was examined by utilizing the Kahramanmaras earthquake data.As a result of the study,it was observed that designs with infill wall building models gave better results compared to the other models.The near fault effect was observed to be more dominant in building models without infill walls and with open stories.In conclusion,the infill walls was positively affected with regard to the near fault effect and the features of the building,such as period values,ground story behavior,story shear forces,column moment values,inter-story drift ratio,and base shear forces on ground floors,and increased base shear force.
基金the ORSP at Abu Dhabi University,UAE,for funding this project(Grant No.19300751).
文摘The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal treatment on the shear behavior of sedimentary sandstone and igneous granite,which are abundant in the Earth's crust.Direct shear tests were conducted on rock joints at room temperature(RT),250℃,and 500℃.The results show that the joints in sandstone and granite exhibit improved compressive and shear strength up to a temperature threshold of 200℃–350℃,followed by significant weakening beyond this range.This study investigated key parameters,including normal and shear stiffness,maximum joint closure,peak and residual shear strengths,internal friction angle,dilation angle,and cohesion.The compressive behavior of both rock types followed a modifiedBandis's equation.The peak shear strength followed Patton's bilinear and Jaeger's nonlinear failure criteria more accurately than the Mohr–Coulomb criterion.The results of this study provide valuable insights into the temperature-dependent behavior of sandstone and granite joints under compressive and shear loads,and their interoperation was strongly dependent on the mineralogical and structural components of the two rock types.These results have advanced our understanding of the temperature-dependent behavior of rock fractures,improving the safety of underground structures under thermal effects.
文摘The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations traversing shallow waters,where ice-berg keels may reach the seabed,potentially damaging subsea structures.Consequently,costly and time-intensive iceberg manage-ment operations,such as towing and rerouting,are undertaken to safeguard subsea and offshore infrastructure.This study,therefore,explores the application of extra tree regression(ETR)as a robust solution for estimating iceberg draft,particularly in the preliminary phases of decision-making for iceberg management projects.Nine ETR models were developed using parameters influencing iceberg draft.Subsequent analyses identified the most effective models and significant input variables.Uncertainty analysis revealed that the superior ETR model tended to overestimate iceberg drafts;however,it achieved the highest precision,correlation,and simplicity in estimation.Comparison with decision tree regression,random forest regression,and empirical methods confirmed the superior perfor-mance of ETR in predicting iceberg drafts.
文摘The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric and radiometric performance using georeferenced,high-reflectivity foil targets.The method enables precise extraction of target centers and correction of systematic georeferencing errors through 3D transformation.The approach was applied at the Tora Cement Factory in Cairo,Egypt—an industrial site with complex topography—using a DJI Matrice 300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor and Zenmuse P1 photogrammetric camera.Three test flights were performed at altitudes of 50 m(nadir and oblique)and 70 m(oblique),with a high-resolution Structure-from-Motion(SfM)point cloud generated for reference.After transformation,the global RMSE of the LiDAR dataset was reduced to approximately 2.8∼3.2 cm,improving upon the raw uncorrected accuracy of up to 4.6 cm.Surface-wise comparisons showed RMSEs of 3.1 cm on flat areas,3.8 cm on rugged terrain,and 4.5 cm on vertical structures.Additionally,the RGB data embedded in the LiDAR point cloud exhibited a systematic spatial offset between 18 and 43 cm,with an average internal standard deviation near 5 cm,indicating a potential limitation for radiometric applications.The proposed method offers a cost-effective,accurate,and repeatable solution for UAV LiDAR validation and supports operational deployment,quality assurance,and system calibration in real-world scenarios.
文摘The study aims to develop an empirical model to predict the rainfall intensity in Al-Diwaniyah City,Iraq,according to a statistical analysis based on probability and the specific rainfall return period.Rainfall data were collected daily for 25 years starting in 2000.Daily rainfall data were converted to rainfall intensity for five duration periods ranging from one to five hours.The extreme values were checked,and data that deviated from the group trend were removed for each period,and then arranged in descending order using the Weibull formula to calculate the probability.Statistically,the model performance with a return period of two years is considered good when compared with observed results and other methods such as Talbot and Sherman with a coefficient of determination(R2)>0.97 and Nash-Sutcliffe efficiency(NSE)>0.80.The results showed that a mathematical equation was obtained that describes the relationship between rainfall intensity,probability,and rainfall duration,which can be used for a confined return period with a 50% probability.Therefore,decision-makers can rely on the model to improve the performance of the city’s current drainage system during flood periods in the future.
基金supported by the International Institute of Earthquake Engineering and Seismology(IIEES) as technical project No.760
文摘The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results.