期刊文献+
共找到569篇文章
< 1 2 29 >
每页显示 20 50 100
Topology,Size,and Shape Optimization in Civil Engineering Structures:A Review
1
作者 Ahmed Manguri Hogr Hassan +1 位作者 Najmadeen Saeed Robert Jankowski 《Computer Modeling in Engineering & Sciences》 2025年第2期933-971,共39页
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de... The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned. 展开更多
关键词 Structural optimization topology optimization size optimization shape optimization multi-objective optimization
在线阅读 下载PDF
Current State of Numerical Simulations and Testing for the Blast and Impact Protection of the Build Civil Engineering Infrastructure
2
作者 GEBBEKEN Norbert 《Transactions of Tianjin University》 EI CAS 2006年第B09期1-7,共7页
The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures i... The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures is demanded. Security associations have analysed that most assaults came along with explosion and impact scenarios, which amount in 80% of assaults. Consequently, these are the extraordinary loads the structures have to be planned and designed for. To carry out such an engineering job, the engineer has to be educated in multiple disciplines as physics, material science , continuum mechanics, numerical mechanics, testing, structural engineering and related specific fields as wave propagation etc. In this paper we will concentrate on the subjects of numerical simulation and testing. 展开更多
关键词 BLAST IMPACT numerical simulation testing passive structural safety
在线阅读 下载PDF
Integrating ACAD with GIS for Civil Engineering Applications
3
作者 Asma Thamir Ibraheem Haidar Alaa Hassan Mustefa Husam Abd Al-Husain 《Journal of Software Engineering and Applications》 2012年第3期138-146,共9页
GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and int... GIS is a computerized database management system that provides geographic access (capture, storage, retrieval, analysis and display) to spatial data. Civil Engineering projects involve the management, analysis and integration of large amounts of geographic information to ensure success. This can include a wide range of information such as detailed design drawings originating from CAD solutions, detailed mapping, air photography, geological investigations, population information, traffic flows and environmental models. Although there are some similarities between CAD and GIS there are many differences. The most fundamental difference is that GIS mode is the world as it exists, whereas CAD models artifacts yet to be produced. As a result the data manipulated by a GIS is an order of magnitude larger and more complex than CAD systems have to deal with, and the nature of the data, its sources and its uses are quite different. In this paper, the selected area was Nahrain University. Many data were saved on the site map as a transparence layers built by using AutoCAD (2006). Then a digital library was built for the selected area and many data were saved on the site map as a themes built by using ArcView software. 展开更多
关键词 CAD CIVIL Engineering COMPUTER GIS SPATIAL Data
暂未订购
Solution to the Breach of the Dike of Keur Bara KAIRE, Located in the Commune of Notto Diobasse in the Department of Thiès, Senegal
4
作者 Ndiouga Camara Birane Niane Séni Tamba 《Engineering(科研)》 2024年第11期390-411,共22页
This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the w... This article studies the rupture of the Keur Bara KAIRE dike, located in the commune of Notto Diobasse in the department of Thiès in Senegal. The village is crossed by a stream which collects rainwater from the west to the east, following a natural slope. The overflow of this stream causes serious flooding, leading to the total cutting of the road and the isolation of the population. These floods had tragic consequences, resulting in two losses of human life. To regulate the water level, prevent flooding, and protect agricultural and urban areas from overflows, the Senegalese authorities initiated the project to build the Keur Bara KAIRE dike in 2004, but unfortunately, the latter gave way in 2017. The geotechnical analysis was carried out on samples taken from various points on the site, revealing that the terrain is mainly composed of fine sand and the embankment is made with clayey sand. Morphometric and hydrological investigations highlight that the watershed of the Keur Bara KAIRE dike covers an area of 3.72 km2, with a projected flow of 54.99 m3/s. The resizing of the dike revealed the following data: a length of 132 meters and a height of 3 meters. The spillway is 52.99 meters long with a reservoir height of 1.22 meters. The bay walls have a thickness of 50 cm and the embankments have a slope of 1/2 upstream and downstream. The stability calculation on the broken dike reveals a sliding safety factor (FSG) of 1.84 which complies with the standard and an overturning safety factor (FSR) of 0.13 which is not verified. The surface of the watershed which is equal to 3.72 km2, also the smallest height of precipitation is equal to 234.9 mm and the largest is 664.4 mm, according to the ORSTOM and CIEH methods for hydraulic calculations. 展开更多
关键词 Keur Bara KAIRE DIKE GEOTECHNICAL Topography Surveys WATERSHED Stability
在线阅读 下载PDF
An effective stress-based DSC model for predicting hydromechanical shear behavior of unsaturated collapsible soils subjected to initial shear stress 被引量:1
5
作者 Saman Soleymani Borujerdi S.Mohsen Haeri +1 位作者 Amir Akbari Garakani Chandrakant SDesai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期539-555,共17页
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en... Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results. 展开更多
关键词 Unsaturated collapsible soil Initial shear stress Hydromechanical shear behavior Effective stress Disturbed state concept Critical state
在线阅读 下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
6
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
在线阅读 下载PDF
Temperature influence on fracture behavior in clay-rich mudstone:A comprehensive experimental study
7
作者 ALZO'UBI Abdel Kareem ALNEASAN Mahmoud 《Journal of Central South University》 2025年第11期4463-4485,共23页
This study investigates the fracture behavior of clay-rich mudstone under varying temperature and pressure conditions,which is crucial for the safety of geological structures.It focuses on three fracture types:pure mo... This study investigates the fracture behavior of clay-rich mudstone under varying temperature and pressure conditions,which is crucial for the safety of geological structures.It focuses on three fracture types:pure mode I tensile fractures,pure mode II tensile fractures,and shear fractures,examining specimens at room temperature(RT)and after thermal treatments at 250 and 500℃.The findings reveal that increasing temperatures makes the mudstone more brittle,enhancing fracture velocity,toughness,load-bearing capacity,roughness,and the fracture process zone(FPZ)radius.Notably,tensile fractures induced under pure mode II displayed the highest velocities,while shear fractures exhibited the lowest velocities,smoothest surfaces,and greatest resistance to failure.The application of a confining pressure of 4 MPa significantly improved shear fracture toughness by 119.7%,98.5%and 71.9%at RT,250℃and 500℃,respectively,and reduced roughness by 8.2%,22.4%and 30.4%.This research offers a novel,comprehensive view of how temperature and pressure impact fractures in mudstone sensitive to temperature due to its high clay content and water affinity.The findings provide valuable insights applicable to geothermal energy,oil and gas exploration,and underground construction,thereby enhancing the understanding of fracture mechanics in geological contexts. 展开更多
关键词 pure mode I tensile fractures pure mode II tensile fractures shear fractures temperature fracture speed fracture process zone
在线阅读 下载PDF
Influence of Rubber Fine Powder on the Road Bitumen Properties
8
作者 Nasr-Eddine Bouhamou 《Journal of Civil Engineering and Architecture》 2025年第5期230-236,共7页
Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as ... Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as a pavement.It is interested primarily in the behavior of two types of bitumen 40/50 modified by the addition of two varieties of rubber fine powders of different grading,resulting from the crushing of the rubbery products intended for the clothes industry of soles of shoes.The objective of the experimentation is to study the influence of the added polymer on the physical properties of the ordinary road bitumen with the incorporation of the fine powder.The experimental approach is carried out using the two tests of characterization of the bitumen i.e.the softening point test and the penetration test which remain the most used to define and classify the road bitumen.It will be noted however,that the experimental investigation which is based on several tests according to the type and the content of fine powders,leads on a whole of interesting correlations. 展开更多
关键词 BITUMEN rubber fine powder DEVELOPMENT penetrability softening point.
在线阅读 下载PDF
Effects of partial structural damage in the dynamic characteristics of an existing RC building
9
作者 Fuat Aras 《Earthquake Engineering and Engineering Vibration》 2025年第3期781-793,共13页
Reinforced concrete buildings may experience partial damage after earthquakes or some human-induced actions.A decision about the future of those buildings requires detailed analyses,while determining the dynamic chara... Reinforced concrete buildings may experience partial damage after earthquakes or some human-induced actions.A decision about the future of those buildings requires detailed analyses,while determining the dynamic characteristics of a real building in its pre-and post-event situations can guide the analysis.Hence,this study was planned to monitor the dynamic response of an existing six-story,reinforced concrete building with regard to structural damage.The modal characteristics of the original building were initially determined by the use of operational modal analysis.Next,three steps of progressive structural damage were applied to the building.The first damage level peeled off the clear cover of a beam and three columns on a corner of the building’s ground floor.whereas the second and third levels completely razed the damaged columns.Operational modal analysis was repeated at each damage stage to extract the frequencies and detailed mode shapes.Moreover,numerical models based on the finite element method were constructed to confirm the obtained experimental findings.The well-agreed experimental and numerical findings revealed the damage sensitivity of the building’s dynamic response.The quantified amount of frequency change favored a retrofit of the partially damaged buildings rather than their replacement. 展开更多
关键词 operational modal analysis dynamic analysis structural damage column loss ambient vibration survey
在线阅读 下载PDF
Analyzing the impact of infill walls on RC frame building behavior under near-fault earthquake conditions:A study using Kahramanmaras earthquake data
10
作者 Ömer Faruk Nemutlu 《Earthquake Engineering and Engineering Vibration》 2025年第4期993-1014,共22页
Infill walls that are considered for the design phase of RC buildings completely change damage mechanisms.In such cases,field studies conducted after destructive earthquakes show that the damage is advanced,especially... Infill walls that are considered for the design phase of RC buildings completely change damage mechanisms.In such cases,field studies conducted after destructive earthquakes show that the damage is advanced,especially in structures without infilling walls on the ground floors.The same situation was observed in destructive earthquakes such as the 2023 Kahramanmaras earthquake.The main goal of this study is to examine the effect of the infill wall situation on the behavior of structures in earthquakes and to examine how the near-fault effect will change the damage levels of structures with and without infill walls.In this context,the effect of the infill wall situation was examined by utilizing the Kahramanmaras earthquake data.As a result of the study,it was observed that designs with infill wall building models gave better results compared to the other models.The near fault effect was observed to be more dominant in building models without infill walls and with open stories.In conclusion,the infill walls was positively affected with regard to the near fault effect and the features of the building,such as period values,ground story behavior,story shear forces,column moment values,inter-story drift ratio,and base shear forces on ground floors,and increased base shear force. 展开更多
关键词 infill wall near fault effect Kahramanmaras earthquake reinforced concrete buildings time history analyses
在线阅读 下载PDF
Iceberg Draft Prediction Using Several Tree-Based Machine Learning Models
11
作者 AZIMI Hamed SHIRI Hodjat 《Journal of Ocean University of China》 2025年第5期1269-1288,共20页
The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations... The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations traversing shallow waters,where ice-berg keels may reach the seabed,potentially damaging subsea structures.Consequently,costly and time-intensive iceberg manage-ment operations,such as towing and rerouting,are undertaken to safeguard subsea and offshore infrastructure.This study,therefore,explores the application of extra tree regression(ETR)as a robust solution for estimating iceberg draft,particularly in the preliminary phases of decision-making for iceberg management projects.Nine ETR models were developed using parameters influencing iceberg draft.Subsequent analyses identified the most effective models and significant input variables.Uncertainty analysis revealed that the superior ETR model tended to overestimate iceberg drafts;however,it achieved the highest precision,correlation,and simplicity in estimation.Comparison with decision tree regression,random forest regression,and empirical methods confirmed the superior perfor-mance of ETR in predicting iceberg drafts. 展开更多
关键词 sea-bottom founded structures iceberg draft extra tree regression decision tree regression random forest regression
在线阅读 下载PDF
Advanced Techniques for Precision Assessment in UAV LiDAR Systems
12
作者 Hany Abdel-MAKSOUD Tarek Abdel AZIZ +1 位作者 Ahmed S.ELSHARKAWY OsamaMOURSY 《Journal of Geodesy and Geoinformation Science》 2025年第2期90-107,共18页
The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric... The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric and radiometric performance using georeferenced,high-reflectivity foil targets.The method enables precise extraction of target centers and correction of systematic georeferencing errors through 3D transformation.The approach was applied at the Tora Cement Factory in Cairo,Egypt—an industrial site with complex topography—using a DJI Matrice 300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor and Zenmuse P1 photogrammetric camera.Three test flights were performed at altitudes of 50 m(nadir and oblique)and 70 m(oblique),with a high-resolution Structure-from-Motion(SfM)point cloud generated for reference.After transformation,the global RMSE of the LiDAR dataset was reduced to approximately 2.8∼3.2 cm,improving upon the raw uncorrected accuracy of up to 4.6 cm.Surface-wise comparisons showed RMSEs of 3.1 cm on flat areas,3.8 cm on rugged terrain,and 4.5 cm on vertical structures.Additionally,the RGB data embedded in the LiDAR point cloud exhibited a systematic spatial offset between 18 and 43 cm,with an average internal standard deviation near 5 cm,indicating a potential limitation for radiometric applications.The proposed method offers a cost-effective,accurate,and repeatable solution for UAV LiDAR validation and supports operational deployment,quality assurance,and system calibration in real-world scenarios. 展开更多
关键词 UAV LIDAR PRECISION ACCURACY
在线阅读 下载PDF
Thermal effect on shear and compressive behaviors of rock fractures:Cases of sandstone and granite
13
作者 Abdel Kareem Alzo'ubi Mahmoud Alneasan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7007-7022,共16页
The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal tr... The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal treatment on the shear behavior of sedimentary sandstone and igneous granite,which are abundant in the Earth's crust.Direct shear tests were conducted on rock joints at room temperature(RT),250℃,and 500℃.The results show that the joints in sandstone and granite exhibit improved compressive and shear strength up to a temperature threshold of 200℃–350℃,followed by significant weakening beyond this range.This study investigated key parameters,including normal and shear stiffness,maximum joint closure,peak and residual shear strengths,internal friction angle,dilation angle,and cohesion.The compressive behavior of both rock types followed a modifiedBandis's equation.The peak shear strength followed Patton's bilinear and Jaeger's nonlinear failure criteria more accurately than the Mohr–Coulomb criterion.The results of this study provide valuable insights into the temperature-dependent behavior of sandstone and granite joints under compressive and shear loads,and their interoperation was strongly dependent on the mineralogical and structural components of the two rock types.These results have advanced our understanding of the temperature-dependent behavior of rock fractures,improving the safety of underground structures under thermal effects. 展开更多
关键词 Sedimentary sandstone Igneous granite Thermal treatment Joint shear behavior Joint compressive behavior Direct shear test
在线阅读 下载PDF
Develop an Empirical Model to Forecast Rainfall Intensity as a Function of Probability For Al-Diwaniyah City in Iraq
14
作者 Ahmed Sagban Khudier Mohammed Hameed Al-Tofan Yasser Mohamed Ahmmed 《Journal of Environmental & Earth Sciences》 2025年第7期353-367,共15页
The study aims to develop an empirical model to predict the rainfall intensity in Al-Diwaniyah City,Iraq,according to a statistical analysis based on probability and the specific rainfall return period.Rainfall data w... The study aims to develop an empirical model to predict the rainfall intensity in Al-Diwaniyah City,Iraq,according to a statistical analysis based on probability and the specific rainfall return period.Rainfall data were collected daily for 25 years starting in 2000.Daily rainfall data were converted to rainfall intensity for five duration periods ranging from one to five hours.The extreme values were checked,and data that deviated from the group trend were removed for each period,and then arranged in descending order using the Weibull formula to calculate the probability.Statistically,the model performance with a return period of two years is considered good when compared with observed results and other methods such as Talbot and Sherman with a coefficient of determination(R2)>0.97 and Nash-Sutcliffe efficiency(NSE)>0.80.The results showed that a mathematical equation was obtained that describes the relationship between rainfall intensity,probability,and rainfall duration,which can be used for a confined return period with a 50% probability.Therefore,decision-makers can rely on the model to improve the performance of the city’s current drainage system during flood periods in the future. 展开更多
关键词 Rainfall Intensity Probability of Flood Al-Diwaniyah City Empirical Model
在线阅读 下载PDF
3D numerical simulation of a centrifuge test on a soil-nailed wall supporting an excavation under cyclic loading
15
作者 Javad Jalili Mohammad Moradi 《Earthquake Engineering and Engineering Vibration》 2025年第2期381-394,共14页
The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of supp... The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results. 展开更多
关键词 centrifuge test nailed wall numerical analysis excavation support
在线阅读 下载PDF
Soil liquefaction assessment using machine learning
16
作者 Gamze Maden Muftuoglu Kaveh Dehghanian 《Artificial Intelligence in Geosciences》 2025年第1期166-176,共11页
Liquefaction is one of the prominent factors leading to damage to soil and structures.In this study,the rela-tionship between liquefaction potential and soil parameters is determined by applying feature importance met... Liquefaction is one of the prominent factors leading to damage to soil and structures.In this study,the rela-tionship between liquefaction potential and soil parameters is determined by applying feature importance methods to Random Forest(RF),Logistic Regression(LR),Multilayer Perceptron(MLP),Support Vector Machine(SVM)and eXtreme Gradient Boosting(XGBoost)algorithms.Feature importance methods consist of permuta-tion and Shapley Additive exPlanations(SHAP)importances along with the used model’s built-in feature importance method if it exists.These suggested approaches incorporate an extensive dataset of geotechnical parameters,historical liquefaction events,and soil properties.The feature set comprises 18 parameters that are gathered from 161 field cases.Algorithms are used to determine the optimum performance feature set.Compared to other approaches,the study assesses how well these algorithms predict soil liquefaction potential.Early findings show that the algorithms perform well,demonstrating their capacity to identify non-linear connections and improve prediction accuracy.Among the feature set,σ,v(psf),MSF,CSRσ,v,FC%,Vs*,40f t(f ps)and N1,60,CS are the ones that have the highest deterministic power on the result.The study’s contribution is that,in the absence of extensive data for liquefaction assessment,the proposed method estimates the liquefaction potential using five parameters with promising accuracy. 展开更多
关键词 Liquefaction assessment Machine learning Feature selection Feature importance
在线阅读 下载PDF
Enhanced Load-Settlement Curve Forecasts for Open-Ended Pipe Piles Incorporating Soil Plug Constraints Using Shallow and Deep Neural Networks
17
作者 Luttfi A.AL-HADDAD Mohammed Y.FATTAH +2 位作者 Wissam H.S.AL-SOUDANI Sinan A.AL-HADDAD Alaa Abdulhady JABER 《China Ocean Engineering》 2025年第3期562-572,共11页
This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Levera... This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Leveraging a dataset comprising open-ended pipe piles with varying geometrical and geotechnical properties, this research employs shallow neural network(SNN) and deep neural network(DNN) models to predict plugging conditions for both driven and pressed installation types. This paper underscores the importance of key parameters such as the settlement value,applied load, installation type, and soil configuration(loose, medium, and dense) in accurately predicting pile settlement. These findings offer valuable insights for optimizing pile design and construction in geotechnical engineering,addressing a longstanding challenge in the field. The study demonstrates the potential of the SNN and DNN models in precisely identifying plugging conditions before pile driving, with the SNN achieving R2 values ranging from0.444 to 0.711 and RMSPE values ranging from 24.621% to 48.663%, whereas the DNN exhibits superior performance, with R2 values ranging from 0.815 to 0.942 and RMSPE values ranging from 4.419% to 10.325%. These results have significant implications for enhancing construction practices and reducing uncertainties associated with pile foundation projects in addition to leveraging artificial intelligence tools to avoid long experimental procedures. 展开更多
关键词 pipe piles soil plug artificial neural network bearing capacity forecasts
在线阅读 下载PDF
Ground vibration isolation using mass scatters:A comparative study with trench barriers and wave-impeding blocks
18
作者 Mohannad Mhanna Majeed R.Sabaa +1 位作者 Hayder A.Mahdi Mahdi Karkush 《Deep Underground Science and Engineering》 2025年第4期792-799,共8页
Traffic-induced ground vibrations cause significant problems for residents and nearby structures.Reducing the effect of these vibrations on the neighboring environment is a key challenge,particularly in urban areas.Th... Traffic-induced ground vibrations cause significant problems for residents and nearby structures.Reducing the effect of these vibrations on the neighboring environment is a key challenge,particularly in urban areas.This study presents both numerical and experimental investigations of the performance of mass scatters for screening ground vibrations.A three-dimensional numerical model is validated and extended to conduct a comparative study on the efficiency of three geotechnical methods of isolation.These methods include trench barriers,waveimpeding blocks(WIBs),and mass scatters.The results showed that mass scatters represent an efficient way of scattering ground vibrations,and their efficiency is mainly related to the weights of mass scatters and their natural frequency,which control the dynamic soil response in the frequency domain.Rigid trench barriers are less effective than soft ones,and their efficiency is more pronounced regarding the WIB.Soft barriers with a depth of an order of half of the wavelength can decrease the vibration levels by up to 50%,which is comparable to the performance of enormous mass scatters.The dimensions of WIBs must be chosen according to the wavelength of incident waves and the cutoff frequency of the topsoil layer.Considering the significant wavelength of traffic-induced vibration,the use of trench barriers or WIBs becomes impractical and expensive;therefore,mass scatters appear to be an efficient and practical solution. 展开更多
关键词 ground-borne vibration ISOLATION mass scatter trench barrier wave-impeding block
原文传递
Climate change trends and adaptation strategies in Southern Regions of Iraq
19
作者 Laheab A Al-Maliki Rana Abd Al Hadi Mukheef +1 位作者 Khaled El-Tawil Nadhir Al-Ansari 《Journal of Groundwater Science and Engineering》 2025年第4期449-468,共20页
This study investigates the impacts of climate change on temperature and precipitation patterns across four governorates in southern Iraq—Basrah,Thi Qar,Al Muthanna,and Messan—using an inte-grated modeling framework... This study investigates the impacts of climate change on temperature and precipitation patterns across four governorates in southern Iraq—Basrah,Thi Qar,Al Muthanna,and Messan—using an inte-grated modeling framework that combines the Long Ashton Research Station Weather Generator(LARS-WG)with three CMIP5-based Global Climate Models(Hadley Centre Global Environmental Model version 2-Earth System(HadGEM2-ES)),European Community Earth-System Model(EC-Earth),and Model for Interdisciplinary Research on Climate version 5(MIROC5).Projections were generated for three future time periods(2021–2040,2041–2060,and 2061–2080)under two Representative Concentration Pathways(RCP4.5 and RCP8.5).By integrating high-resolution climate simulations with localized drought risk analy-sis,this study provides a detailed outlook on climate change trends in the region.The novelty of this research lies in its high-resolution,station-level analysis and its integration of localized statistical downscal-ing techniques to enhance the spatial applicability of coarse GCM outputs.Model calibration and validation 2 were performed using historical climate data(1990–2020),resulting in high accuracy across all stations(R=0.91–0.99;RMSE=0.19–2.78),thus reinforcing the robustness of the projections.Results indicate a significant rise in average annual maximum and minimum temperatures,with increases ranging from 0.88°C to 3.68°C by the end of the century,particularly under the RCP8.5 scenario.Precipitation patterns exhibit pronounced interannual variability,with the highest predicted increases reaching up to 19.26 mm per season,depending on the model and location.These shifts suggest heightened vulnerability to drought and water scarcity,particularly in already arid regions such as Muthanna and Thi Qar.The findings under-score the urgent need for adaptive strategies in water resource management and agricultural planning,providing decision-makers with region-specific climate insights critical for sustainable development under changing climate conditions. 展开更多
关键词 Climate model projections Climate vulnerability Extreme events Hydrological risk Statisti-cal downscaling
在线阅读 下载PDF
Reactivation of the railway line from Surabaya to Madura: Enhancing regional connectivity and transportation infrastructure
20
作者 Gunawan Gunawan Basil David Daniel +1 位作者 Slamet Budi Utomo Jenny Caroline 《High-Speed Railway》 2025年第4期330-336,共7页
Indonesia is facing severe congestion and high accident rates as motor vehicle growth continues to outpace road capacity,underscoring the urgent need for alternative mass transportation.A promising solution is the rea... Indonesia is facing severe congestion and high accident rates as motor vehicle growth continues to outpace road capacity,underscoring the urgent need for alternative mass transportation.A promising solution is the reactivation of the Surabaya–Madura railway,an abandoned infrastructure with significant potential to enhance regional connectivity and urban mobility.However,academic studies on railway reactivation remain limited,particularly in the Madura context where dependence on road-based transport persists.This research gap highlights the importance of examining reactivation not only as a transportation alternative but also as a catalyst for regional development.This study adopts a qualitative approach through descriptive surveys to evaluate infrastructure conditions,identify feasible routes,and analyze broader spatial implications.Findings reveal that railway reactivation could strengthen multimodal integration,reduce congestion,and support sustainable growth.This study provides the first empirical evidence of the strategic value of the Surabaya–Madura railway within Indonesia’s transport and regional development discourse. 展开更多
关键词 Railway reactivation Regional connectivity Urban mobility Sustainable development
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部