Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduce...Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.展开更多
The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis.Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circ...The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis.Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adultborn versus pre/perinatally-born neuron number.In contrast,the non-neurogenic functions of adult neural stem cells and their immediate progeny,such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins,lack similar framing due to few estimates of their number versus other prominent secretory cells.Here,we apply immunohistochemical methods to estimate cell density of neural stem/progenitor cells versus other major classes of glial and endothelial cell types that are potentially secretory in the dentate gyrus of adult mice.Of the cell types quantified,we found that GFAP^(+)SOX2^(+)stellate astrocytes were the most numerous,followed by CD31^(+)endothelia,GFAP-SOX2^(+)intermediate progenitors,Olig2^(+)oligodendrocytes,Iba1+microglia,and GFAP^(+)SOX2^(+)radial glia-like neural stem cells.We did not observe any significant sex differences in density of any cell population.Notably,neural stem/progenitor cells were present at a similar density as several cell types known to have potent functional roles via their secretome.These findings may be useful for refining hypotheses regarding the contributions of these cell types to regulating hippocampal function and their potential therapeutic uses.All experimental protocols were approved by the Ohio State University Institutional Animal Care and Use Committee(protocol#2016A00000068)on July 14,2016.展开更多
Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profou...Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profoundly affecting the overall quality of life among individuals afflicted by SCI and their families. Recovery of spinal cord functions may be attained by promoting the sprouting of non-injured axons and/or the regeneration of damaged axons.展开更多
Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes.The complex nature of these conditions demands precise and quantitative monitor...Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes.The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous,real-time manner.Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites,dependence on clinician expertise,and prolonged and recurrent interventions.Bio-integrated electronics for chemical sensing is an emerging,multidisciplinary field enabled by rapid advances in electrical engineering,biosensing,materials science,analytical chemistry,and biomedical engineering.This review presents an overview of recent progress in bio-integrated electrochemical sensors,with an emphasis on their relevance to neuroengineering and neuro-modulation.It traverses vital neurological biomarkers and explores bio-recognition elements,sensing strategies,transducer designs,and wireless signal transmission methods.The integration of in vivo biochemical sensors is showcased through applications.The review concludes by outlining future trends and advancements in in vivo electrochemical sensing,and highlighting ongoing research and technological innovation,which aims to provide inspiring and practical instructions for future research.展开更多
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
基金partially supported by a R00 Pathway to Independence Award from NIH/NINDS(R00NS089938)(to EDK)
文摘Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.
基金a R00 Pathway to Independence Award from NIH/NINDS(R00NS089938to EDK).
文摘The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis.Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adultborn versus pre/perinatally-born neuron number.In contrast,the non-neurogenic functions of adult neural stem cells and their immediate progeny,such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins,lack similar framing due to few estimates of their number versus other prominent secretory cells.Here,we apply immunohistochemical methods to estimate cell density of neural stem/progenitor cells versus other major classes of glial and endothelial cell types that are potentially secretory in the dentate gyrus of adult mice.Of the cell types quantified,we found that GFAP^(+)SOX2^(+)stellate astrocytes were the most numerous,followed by CD31^(+)endothelia,GFAP-SOX2^(+)intermediate progenitors,Olig2^(+)oligodendrocytes,Iba1+microglia,and GFAP^(+)SOX2^(+)radial glia-like neural stem cells.We did not observe any significant sex differences in density of any cell population.Notably,neural stem/progenitor cells were present at a similar density as several cell types known to have potent functional roles via their secretome.These findings may be useful for refining hypotheses regarding the contributions of these cell types to regulating hippocampal function and their potential therapeutic uses.All experimental protocols were approved by the Ohio State University Institutional Animal Care and Use Committee(protocol#2016A00000068)on July 14,2016.
基金supported by the National Institute of Neurological Disorders (R01NS110681 and R21NS109787 (to AT))the Chronic Brain Injury Program (to AT)The Ohio State University/ Wexner Medical Center。
文摘Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profoundly affecting the overall quality of life among individuals afflicted by SCI and their families. Recovery of spinal cord functions may be attained by promoting the sprouting of non-injured axons and/or the regeneration of damaged axons.
基金supported by The Ohio State University start-up funds and the Chronic Brain Injury Pilot Award Program at The Ohio State UniversityThis work was also supported by the Ohio State University Ma-terials Research Seed Grant Program,funded by the Center for Emergent Materials+2 种基金NSF-MRSEC,grant DMR-2011876the Center for Exploration of Novel Complex Materialsthe Institute for Materials Research.J.L.acknowledges the support from National Science Foundation award ECCS-2223387.
文摘Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes.The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous,real-time manner.Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites,dependence on clinician expertise,and prolonged and recurrent interventions.Bio-integrated electronics for chemical sensing is an emerging,multidisciplinary field enabled by rapid advances in electrical engineering,biosensing,materials science,analytical chemistry,and biomedical engineering.This review presents an overview of recent progress in bio-integrated electrochemical sensors,with an emphasis on their relevance to neuroengineering and neuro-modulation.It traverses vital neurological biomarkers and explores bio-recognition elements,sensing strategies,transducer designs,and wireless signal transmission methods.The integration of in vivo biochemical sensors is showcased through applications.The review concludes by outlining future trends and advancements in in vivo electrochemical sensing,and highlighting ongoing research and technological innovation,which aims to provide inspiring and practical instructions for future research.