Neutral beam injection (NBI) is one of the most effective ways to heat and drive plasma in a tokamak. The mega watt level neutral beam injector on the HL-2A tokamak consists of four high-power ion sources. Each sour...Neutral beam injection (NBI) is one of the most effective ways to heat and drive plasma in a tokamak. The mega watt level neutral beam injector on the HL-2A tokamak consists of four high-power ion sources. Each source is supplied by discharge, beam extraction and auxiliary power supplies. Some circuit topologies and control sequences designed for the system are presented in this paper. Some important technologies such as the notching circuit, insulated gate bipolar transistor (IGBT) series-connected switch, high-frequency switching power supply and control system based on a digital signal processor (DSP) have been used. The system can be effectively used for high current ion beam extraction, protection, ion optics and so on. The power system has been safely used in HL-2A high-parameter NBI experiments for three years. The power of NBI can be kept at higher than 0.75 MW for 1 second and the ion beam power extracted from the ion source is higher than 2 MW. The ion temperature of the plasma center is close to 2.0 keV. These results show that the design of this power system is reasonable and reliable, and it can fully meet the system requirements for NBI of the HL-2A tokamak.展开更多
In this study,a novel energy-efficient single-phase induction motor with three stator windings is proposed as shown in Fig 1.The winding A constitutes the first branch.The series connection of the capacitor C and the ...In this study,a novel energy-efficient single-phase induction motor with three stator windings is proposed as shown in Fig 1.The winding A constitutes the first branch.The series connection of the capacitor C and the winding B constitute the second branch,and the series connection of the capacitor C2 and the winding C constitute the third one.The above three branches are connected in parallel as shown in Fig.2.展开更多
Photovoltaic(PV)generation always exhibits strong uncertainty and variability;therefore,its excessive integration brings huge risks to the safe operation of power systems.In this letter,a two-stage robust optimization...Photovoltaic(PV)generation always exhibits strong uncertainty and variability;therefore,its excessive integration brings huge risks to the safe operation of power systems.In this letter,a two-stage robust optimization approach based on decision-dependent uncertainty is devised to identify the Pv hosting capacity that can be accepted to ensure the effective consumption of PV generation under uncertainty.The proposed approach is validated by numerical experiments for a microgrid and a distribution network.展开更多
基金supported partly by the Fund of Science and Technology Department of Hunan Province of China(2010FJ3170)
文摘Neutral beam injection (NBI) is one of the most effective ways to heat and drive plasma in a tokamak. The mega watt level neutral beam injector on the HL-2A tokamak consists of four high-power ion sources. Each source is supplied by discharge, beam extraction and auxiliary power supplies. Some circuit topologies and control sequences designed for the system are presented in this paper. Some important technologies such as the notching circuit, insulated gate bipolar transistor (IGBT) series-connected switch, high-frequency switching power supply and control system based on a digital signal processor (DSP) have been used. The system can be effectively used for high current ion beam extraction, protection, ion optics and so on. The power system has been safely used in HL-2A high-parameter NBI experiments for three years. The power of NBI can be kept at higher than 0.75 MW for 1 second and the ion beam power extracted from the ion source is higher than 2 MW. The ion temperature of the plasma center is close to 2.0 keV. These results show that the design of this power system is reasonable and reliable, and it can fully meet the system requirements for NBI of the HL-2A tokamak.
文摘In this study,a novel energy-efficient single-phase induction motor with three stator windings is proposed as shown in Fig 1.The winding A constitutes the first branch.The series connection of the capacitor C and the winding B constitute the second branch,and the series connection of the capacitor C2 and the winding C constitute the third one.The above three branches are connected in parallel as shown in Fig.2.
基金This work was supported by the National Research Foundation Singapore,Intra-CREATE REQ0393291(No.NRF2022-ITS010-0005)the National Research Foundation Singapore,Energy Market Authority under its Energy Programme(EP Award EMA-EP004-EKJGC-0003).
文摘Photovoltaic(PV)generation always exhibits strong uncertainty and variability;therefore,its excessive integration brings huge risks to the safe operation of power systems.In this letter,a two-stage robust optimization approach based on decision-dependent uncertainty is devised to identify the Pv hosting capacity that can be accepted to ensure the effective consumption of PV generation under uncertainty.The proposed approach is validated by numerical experiments for a microgrid and a distribution network.