It is the fundamental task of the current higher education to cultivate people with morality,in order to realize the education with the all-staff,allprocess and all-around,colleges and universities should carry out id...It is the fundamental task of the current higher education to cultivate people with morality,in order to realize the education with the all-staff,allprocess and all-around,colleges and universities should carry out ideological and political work throughout the whole process of education and teaching.Combining with the connotation of the mechanism of“Threewide education”and through the investigation of many universities,this paper elaborates the mode of college students’ideological and political education under the concept of“Three-wide education”from the aspects of perfecting the education through all-staff of“six in one”,the education through all-process of“three main lines”,and the education through all-around of“three platforms”.展开更多
Pyridine-based agrochemical products have become the most commercially successful in the 21st century.About half of the agrochemicals with pyridine scaffold were released,registered or invented only in the current mil...Pyridine-based agrochemical products have become the most commercially successful in the 21st century.About half of the agrochemicals with pyridine scaffold were released,registered or invented only in the current millennium.Some of them have a unique structure and previously unknown modes of action.The literature provides examples of the use of the pyridine ring in pesticides for reducing the dosage of the active ingredient,hence to take care of the environment due to their increased efficacy,overcoming the pest resistance,and also makes it possible to create patentable structures by dodging the parent patent,which sometimes leads to a change in the spectrum of activity of the compounds.The newest 13 substances registered by the ISO from January 2021 to June 2024,and not reviewed previously are considered.展开更多
The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request...The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request to correct the name to Jingtao Bi as originally intended.>.The authors would like to apologize for any inconvenience caused.展开更多
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal...This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.展开更多
Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfac...Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfacial chemistry,we propose a carbonization-based strategy for achieving ultrafast chemical reaction.In a case study,ultrafast Griess reaction within 1 min through the carbonization of N-(1-naphthalene)ethylenediamine(NETH)was realized.The carbonization-mediated ultrafast reaction is attributed to the synergic action of reduced electrostatic repulsion,enriched reactant concentration,and boosted NETH nucleophilicity.The enhanced reaction kinetics in o-phenylenediamine-Cu^(2)+and ophenylenediamine-ascorbic acid systems validate the universality of carbonization-engineered ultrafast chemical reaction strategy.The finding of this work offers a novel and simple tactic for the fabrication of multifunctional nanoparticles as ultrafast and effective nanoreactants and/or reporters in analytical,biological,and material aspects.展开更多
Background:Chaetomorpha aerea,a marine green alga,has drawn attention because of its rich phytochemical constituents and therapeutic benefits.Using an integrated approach that combined in vitro,in vivo,and in silico a...Background:Chaetomorpha aerea,a marine green alga,has drawn attention because of its rich phytochemical constituents and therapeutic benefits.Using an integrated approach that combined in vitro,in vivo,and in silico approaches,this work examined the antioxidant,anti-inflammatory,and antidiabetic qualities of acetone extract of C.aerea(AECA).Methods:Total phenolic and flavonoid concentrations of AECA were measured.Antioxidant activity was assessed using the DPPH and ABTS free radical scavenging assays.In vitro protein denaturation and in vivo carrageenan-induced paw edema models were employed to evaluate the anti-inflammatory potential,whereas antidiabetic activity was assessed using in vitroα-amylase inhibition and in vivo oral glucose tolerance test(OGTT).Molecular docking and ADME/T analysis were employed to further analyze bioactive compounds identified using gas chromatography–mass spectrometry(GC–MS).Result:Antioxidant activity demonstrated a minimum inhibitory concentration(IC_(50))of 107.44μg/mL for DPPH and 118.23μg/mL for ABTS.In vitro anti-inflammatory assays indicated a suppression of protein denaturation at a concentration of 102μg/mL(IC_(50)),where AECA(400 mg/kg)resulted in a 27%reduction in paw edema at 6 h in the mouse model.In vitro antidiabetic test indicatedα-amylase inhibition with an IC_(50) value of 70.72μg/mL,and in the OGTT,a significant lowering of blood glucose was recorded at 120 min in mice.Strong binding affinities were observed for stigmasta-5,24(28)-dien-3-ol,identified using GC–MS,with values of−9.9 kcal/mol forα-amylase and−8.0 kcal/mol for cyclooxygenase-2.Conclusion:C.aerea serves as an effective natural remedy for oxidative stress,inflammation,and hyperglycemia.These findings advocate for further clinical and mechanistic investigations to optimize therapeutic efficacy.展开更多
Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient cat...Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.展开更多
The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with thei...The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
Pt-HSiW/CeO_(2) catalysts were prepared for chlorobenzene(CB) catalytic combustion by hydrothermal method at different calcination temperatures,and the effects of the surface acidity and chemical valence on the cataly...Pt-HSiW/CeO_(2) catalysts were prepared for chlorobenzene(CB) catalytic combustion by hydrothermal method at different calcination temperatures,and the effects of the surface acidity and chemical valence on the catalytic activity were investigated.The results show that the catalyst calcined at 450℃(Cat-B)exhibits the outstanding catalytic performance,and the Cat-B catalyst possesses 90% conversion of CB at148℃.The excellent catalytic activity of Cat-B is attributed to more Ce^(3+)/(Ce^(3+)+Ce^(4+)),Pt~0/(Pt^(0)+Pt^(2+)),O_(ads)/(O_(latt)+O_(ads)) and Lewis acid sites.The degradation mechanism is proposed based on the analysis of the intermediates with the following reaction pathway:chlorobenzene→phenates/benzoquinone→acetate→maleate→CO_(2)+H_(2)O.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Li_(2)S-P_(2)S_(5)-type inorganic solid electrolytes with cation and/or anion doping are considered to be promising candidates for all-solid-state batteries(ASSBs),due to their high ionic conductivity and electrochemi...Li_(2)S-P_(2)S_(5)-type inorganic solid electrolytes with cation and/or anion doping are considered to be promising candidates for all-solid-state batteries(ASSBs),due to their high ionic conductivity and electrochemical performances.However,compositional tuning of Li_(2)S-P_(2)S_(5) type inorganic solid electrolytes without doping has not been fully studied.In this work,Li-rich Li_(7)P_(2)S_(8)I solid electrolyte was prepared with compositional tuning by high energy ball mill process.The crystalline nature and the structural characteristics of the prepared solid electrolytes were studied with several physiochemical techniques.The effect of compositional tuning and the associated limitations were analyzed by laser Raman spectroscopy and solid-nuclear magnetic resonance spectroscopy(NMR)analysis techniques.The prepared Li-rich Li_(7)P_(2)S_(8)I solid electrolyte exhibited higher ionic conductivity(6.27 mS cm^(-1))than the bare Li_(7)P_(2)S_(8)I solid electrolyte(5.16 mS cm^(-1)).Further,the prepared Li_(7.1)P_(2)S_(8.1)I_(0.9) solid electrolyte is highly stable against lithium metal anode and is stable up to 600 charge-discharge cycles.Thus,the fabricated ASSB using Li-rich Li_(7)P_(2)S_(8)I solid electrolyte exhibited excellent cycle stability of 97% specific capacity retention with less interfacial reaction.Electrochemical impedance spectroscopy and the laser Raman spectroscopy analysis after galvanostatic charge-discharge cycling confirmed the electrochemical stability of Li-rich Li_(7)P_(2)S_(8)I solid electrolyte.展开更多
Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understandi...Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understanding of the reaction performance and kinetics is essential. Given the diversity of the thermal analysis techniques, it is necessary to understand the features and limitations of the reactors, ensuring that the selected thermal analysis reactor meets the specific need for reaction characterization. This paper provides a critical overview of the thermal analysis reactors based on the following perspectives: 1) gas flow conditions in the reactor, 2) particle’s external and internal heat and mass transfer limitations, 3) heating rate, 4) temperature distribution, 5) nascent char production and reaction, 6) liquid feeding and atomization, 7) simultaneous sampling and analyzing of bed materials, and 8) reacting atmosphere change. Finally, prospects and future research directions in the development of analysis techniques are proposed.展开更多
Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource pr...Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource process data,resulting in a low accuracy of existing prediction technology.For that reason,a real-time risk prediction method for chemical processes based on the attention-based bidirectional long short-term memory(Attention-based Bi-LSTM)is proposed in this study.First,multisource process data,such as temperature,pressure,flow rate,and liquid level,are preprocessed for denoising.Data correlation is analyzed in time windows by setting time windows and moving step lengths to explore correlations,thus establishing a complex network model oriented to the chemical production process.Second,network structure entropy is introduced to reduce the dimensions of the multisource process data.Moreover,a 1D relative risk sequence is acquired by maxemin deviation standardization to judge whether the chemical process is in a steady state.Finally,an Attention-based Bi-LSTM algorithm is established by integrating the attention mechanism and the Bi-LSTM network to fit and train 1D relative risk sequences.In that way,the proposed algorithm achieves real-time prediction and intelligent perception of risk states during chemical production.A case study based on the Tennessee Eastman process(TEP)is conducted.The validity and reasonability of the proposed method are verified by analyzing distribution laws of relative risks under normal and fault conditions.Also,the proposed algorithm importantly improves the prediction accuracy of chemical process risks relative to that of existing prediction technologies.展开更多
The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing...The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing CO_(2) to C_(2+)products,the instability of Cu^(+)species,which tend to reduce to Cu~0 at cathodic potentials during CO_(2) reduction,poses a significant challenge.Here,we report the development of SmCu_(2)O and investigate the influence of f-d orbital hybridization on the CO_(2) reduction reaction (CO_(2)RR).Supported by density functional theory (DFT) calculations,our experimental results demonstrate that hybridization between Sm^(3+)4f and Cu^(+)3d orbitals not only improves the adsorption of *CO intermediates and increases CO coverage to stabilize Cu^(+) but also facilitates CO_(2) activation and lowers the energy barriers for CAC coupling.Notably,Sm-Cu_(2)O achieves a Faradaic efficiency for C_(2)H_(4) that is 38%higher than that of undoped Cu_(2)O.Additionally,it sustains its catalytic activity over an extended operational period exceeding 7 h,compared to merely 2 h for the undoped sample.This research highlights the potential of fd orbital hybridization in enhancing the efficacy of copper-based catalysts for CO_(2)RR,pointing towards a promising direction for the development of durable,high-performance electrocatalysts for sustainable chemical synthesis.展开更多
For decades micoorganisms have been engineered for the utilization of lignocellulose-based second-generation (2G) feedstocks, but with theconcerns of increased levels of atmospheric CO_(2) causing global warming there...For decades micoorganisms have been engineered for the utilization of lignocellulose-based second-generation (2G) feedstocks, but with theconcerns of increased levels of atmospheric CO_(2) causing global warming there is an emergent need to transition from the utilization of 2Gfeedstocks to third-generation (3G) feedstocks such as CO_(2) and its derivatives. Here, we established a yeast platform that is capable ofsimultaneously converting 2G and 3G feedstocks into bulk and value-added chemicals. We demonstrated that by adopting 3G substrates such asCO_(2) and formate, the conversion of 2G feedstocks could be substantially improved. Specifically, formate could provide reducing power andenergy for xylose conversion into valuable chemicals. Simultaneously, it can form a concentrated CO_(2) pool inside the cell, providing thermodynamically and kinetically favoured amounts of precursors for CO_(2) fixation pathways, e.g., the Calvin–Benson–Bassham (CBB) cycle.Furthermore, we demonstrated that formate could directly be utilized as a carbon source by yeast to synthesize endogenous amino acids. Theengineered strain achieved a one-carbon (C1) assimilation efficiency of 9.2%, which was the highest efficiency observed in the co-utilization of2G and 3G feedstocks. We applied this strategy for productions of both bulk and value-added chemicals, including ethanol, free fatty acids(FFAs), and longifolene, resulting in yield enhancements of 18.4%, 49.0%, and ~100%, respectively. The strategy demonstrated here for coutilization of 2G and 3G feedstocks sheds lights on both basic and applied research for the up-coming establishment of 3G biorefineries.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
Membrane technology has become one of the most promising separation technologies for its energy saving, high separation efficiency, environmental friendliness, and economic feasibility. Covalent organic frameworks(COF...Membrane technology has become one of the most promising separation technologies for its energy saving, high separation efficiency, environmental friendliness, and economic feasibility. Covalent organic frameworks(COFs) with intrinsically high porosity, controllable pore size, uniform pore size distribution and long-range ordered channel structure, have emerged as next-generation materials to fabricate advanced separation membranes. This feature article summarizes some latest studies in the development of pure COF membranes in our lab, including their fabrication and applications in chemical separations. Finally, current challenges facing high-performance COF separation membranes are discussed.展开更多
基金Research on practice education mode of college students under the concept of“Three-wide education”,Liaoning provincial department of education scientific research project(No.WJ2019014).
文摘It is the fundamental task of the current higher education to cultivate people with morality,in order to realize the education with the all-staff,allprocess and all-around,colleges and universities should carry out ideological and political work throughout the whole process of education and teaching.Combining with the connotation of the mechanism of“Threewide education”and through the investigation of many universities,this paper elaborates the mode of college students’ideological and political education under the concept of“Three-wide education”from the aspects of perfecting the education through all-staff of“six in one”,the education through all-process of“three main lines”,and the education through all-around of“three platforms”.
文摘Pyridine-based agrochemical products have become the most commercially successful in the 21st century.About half of the agrochemicals with pyridine scaffold were released,registered or invented only in the current millennium.Some of them have a unique structure and previously unknown modes of action.The literature provides examples of the use of the pyridine ring in pesticides for reducing the dosage of the active ingredient,hence to take care of the environment due to their increased efficacy,overcoming the pest resistance,and also makes it possible to create patentable structures by dodging the parent patent,which sometimes leads to a change in the spectrum of activity of the compounds.The newest 13 substances registered by the ISO from January 2021 to June 2024,and not reviewed previously are considered.
文摘The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request to correct the name to Jingtao Bi as originally intended.>.The authors would like to apologize for any inconvenience caused.
基金supported by the National Key Research&Development Program of China(2021YFB3301100)the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406).
文摘This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.
基金supported by the National Natural Science Foundation of China(Nos.82160153,21505162,22074005,and 22101027)Natural Science Foundation of Hunan Province,China(No.2022SK2102)+1 种基金Hunan Provincial Department of Education Scientific Research Project(No.240994)the Natural Science Foundation of Beijing Municipality(No.2202038).
文摘Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfacial chemistry,we propose a carbonization-based strategy for achieving ultrafast chemical reaction.In a case study,ultrafast Griess reaction within 1 min through the carbonization of N-(1-naphthalene)ethylenediamine(NETH)was realized.The carbonization-mediated ultrafast reaction is attributed to the synergic action of reduced electrostatic repulsion,enriched reactant concentration,and boosted NETH nucleophilicity.The enhanced reaction kinetics in o-phenylenediamine-Cu^(2)+and ophenylenediamine-ascorbic acid systems validate the universality of carbonization-engineered ultrafast chemical reaction strategy.The finding of this work offers a novel and simple tactic for the fabrication of multifunctional nanoparticles as ultrafast and effective nanoreactants and/or reporters in analytical,biological,and material aspects.
文摘Background:Chaetomorpha aerea,a marine green alga,has drawn attention because of its rich phytochemical constituents and therapeutic benefits.Using an integrated approach that combined in vitro,in vivo,and in silico approaches,this work examined the antioxidant,anti-inflammatory,and antidiabetic qualities of acetone extract of C.aerea(AECA).Methods:Total phenolic and flavonoid concentrations of AECA were measured.Antioxidant activity was assessed using the DPPH and ABTS free radical scavenging assays.In vitro protein denaturation and in vivo carrageenan-induced paw edema models were employed to evaluate the anti-inflammatory potential,whereas antidiabetic activity was assessed using in vitroα-amylase inhibition and in vivo oral glucose tolerance test(OGTT).Molecular docking and ADME/T analysis were employed to further analyze bioactive compounds identified using gas chromatography–mass spectrometry(GC–MS).Result:Antioxidant activity demonstrated a minimum inhibitory concentration(IC_(50))of 107.44μg/mL for DPPH and 118.23μg/mL for ABTS.In vitro anti-inflammatory assays indicated a suppression of protein denaturation at a concentration of 102μg/mL(IC_(50)),where AECA(400 mg/kg)resulted in a 27%reduction in paw edema at 6 h in the mouse model.In vitro antidiabetic test indicatedα-amylase inhibition with an IC_(50) value of 70.72μg/mL,and in the OGTT,a significant lowering of blood glucose was recorded at 120 min in mice.Strong binding affinities were observed for stigmasta-5,24(28)-dien-3-ol,identified using GC–MS,with values of−9.9 kcal/mol forα-amylase and−8.0 kcal/mol for cyclooxygenase-2.Conclusion:C.aerea serves as an effective natural remedy for oxidative stress,inflammation,and hyperglycemia.These findings advocate for further clinical and mechanistic investigations to optimize therapeutic efficacy.
基金National Natural Science Foundation of China,Grant/Award Number:22179029Fundamental Research Funds for the Central Universities,Grant/Award Number:buctrc202324+2 种基金Young Elite Scientists Sponsorship Program by BAST,Grant/Award Number:BYESS2023093Ministero dell'Istruzione,dell'Universitàe della Ricerca,Grant/Award Number:2022FNL89YKempestiftelserna。
文摘Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.
文摘The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.
基金Project supported by the National Natural Science Foundation of China (21872096)Key Research and Development Project of Henan Province (231111320400)+3 种基金Zhongyuan Yingcai Jihua (ZYYCYU202012183)Academic Leader of Henan Institute of Urban Construction (YCJXSJSDTR202204)College Students'Innovation and Entrepreneurship Training Program of Henan Province(202211765053)Doctoral Research Start-up Project of Henan University of Urban Construction (990/Q2017011)。
文摘Pt-HSiW/CeO_(2) catalysts were prepared for chlorobenzene(CB) catalytic combustion by hydrothermal method at different calcination temperatures,and the effects of the surface acidity and chemical valence on the catalytic activity were investigated.The results show that the catalyst calcined at 450℃(Cat-B)exhibits the outstanding catalytic performance,and the Cat-B catalyst possesses 90% conversion of CB at148℃.The excellent catalytic activity of Cat-B is attributed to more Ce^(3+)/(Ce^(3+)+Ce^(4+)),Pt~0/(Pt^(0)+Pt^(2+)),O_(ads)/(O_(latt)+O_(ads)) and Lewis acid sites.The degradation mechanism is proposed based on the analysis of the intermediates with the following reaction pathway:chlorobenzene→phenates/benzoquinone→acetate→maleate→CO_(2)+H_(2)O.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金supported by the National Research Foundation of Korea(NRF)grant(No.NRF-2019R1A6A1A11053838)funded by the Ministry of Education,Science and Technology(MEST)of the Korean Government.
文摘Li_(2)S-P_(2)S_(5)-type inorganic solid electrolytes with cation and/or anion doping are considered to be promising candidates for all-solid-state batteries(ASSBs),due to their high ionic conductivity and electrochemical performances.However,compositional tuning of Li_(2)S-P_(2)S_(5) type inorganic solid electrolytes without doping has not been fully studied.In this work,Li-rich Li_(7)P_(2)S_(8)I solid electrolyte was prepared with compositional tuning by high energy ball mill process.The crystalline nature and the structural characteristics of the prepared solid electrolytes were studied with several physiochemical techniques.The effect of compositional tuning and the associated limitations were analyzed by laser Raman spectroscopy and solid-nuclear magnetic resonance spectroscopy(NMR)analysis techniques.The prepared Li-rich Li_(7)P_(2)S_(8)I solid electrolyte exhibited higher ionic conductivity(6.27 mS cm^(-1))than the bare Li_(7)P_(2)S_(8)I solid electrolyte(5.16 mS cm^(-1)).Further,the prepared Li_(7.1)P_(2)S_(8.1)I_(0.9) solid electrolyte is highly stable against lithium metal anode and is stable up to 600 charge-discharge cycles.Thus,the fabricated ASSB using Li-rich Li_(7)P_(2)S_(8)I solid electrolyte exhibited excellent cycle stability of 97% specific capacity retention with less interfacial reaction.Electrochemical impedance spectroscopy and the laser Raman spectroscopy analysis after galvanostatic charge-discharge cycling confirmed the electrochemical stability of Li-rich Li_(7)P_(2)S_(8)I solid electrolyte.
基金supported by the National Natural Science Foundation of China(U1908201,U1903130)the Ministry of Science and Technology of the People’s Republic of China(2020YFC1909300)the Natural Science Foundation of Liaoning Province of China(2021-NLTS-12-09).
文摘Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understanding of the reaction performance and kinetics is essential. Given the diversity of the thermal analysis techniques, it is necessary to understand the features and limitations of the reactors, ensuring that the selected thermal analysis reactor meets the specific need for reaction characterization. This paper provides a critical overview of the thermal analysis reactors based on the following perspectives: 1) gas flow conditions in the reactor, 2) particle’s external and internal heat and mass transfer limitations, 3) heating rate, 4) temperature distribution, 5) nascent char production and reaction, 6) liquid feeding and atomization, 7) simultaneous sampling and analyzing of bed materials, and 8) reacting atmosphere change. Finally, prospects and future research directions in the development of analysis techniques are proposed.
基金supported by the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406)the National Key Research&Development Program of China(2021YFB3301100).
文摘Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource process data,resulting in a low accuracy of existing prediction technology.For that reason,a real-time risk prediction method for chemical processes based on the attention-based bidirectional long short-term memory(Attention-based Bi-LSTM)is proposed in this study.First,multisource process data,such as temperature,pressure,flow rate,and liquid level,are preprocessed for denoising.Data correlation is analyzed in time windows by setting time windows and moving step lengths to explore correlations,thus establishing a complex network model oriented to the chemical production process.Second,network structure entropy is introduced to reduce the dimensions of the multisource process data.Moreover,a 1D relative risk sequence is acquired by maxemin deviation standardization to judge whether the chemical process is in a steady state.Finally,an Attention-based Bi-LSTM algorithm is established by integrating the attention mechanism and the Bi-LSTM network to fit and train 1D relative risk sequences.In that way,the proposed algorithm achieves real-time prediction and intelligent perception of risk states during chemical production.A case study based on the Tennessee Eastman process(TEP)is conducted.The validity and reasonability of the proposed method are verified by analyzing distribution laws of relative risks under normal and fault conditions.Also,the proposed algorithm importantly improves the prediction accuracy of chemical process risks relative to that of existing prediction technologies.
基金Financial support from the National Natural Science Foundation of China(grant nos.22379006,21575016,U20A20154,22279005)from the National Program for Support of Top-notch Young Professionals is gratefully acknowledged。
文摘The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing CO_(2) to C_(2+)products,the instability of Cu^(+)species,which tend to reduce to Cu~0 at cathodic potentials during CO_(2) reduction,poses a significant challenge.Here,we report the development of SmCu_(2)O and investigate the influence of f-d orbital hybridization on the CO_(2) reduction reaction (CO_(2)RR).Supported by density functional theory (DFT) calculations,our experimental results demonstrate that hybridization between Sm^(3+)4f and Cu^(+)3d orbitals not only improves the adsorption of *CO intermediates and increases CO coverage to stabilize Cu^(+) but also facilitates CO_(2) activation and lowers the energy barriers for CAC coupling.Notably,Sm-Cu_(2)O achieves a Faradaic efficiency for C_(2)H_(4) that is 38%higher than that of undoped Cu_(2)O.Additionally,it sustains its catalytic activity over an extended operational period exceeding 7 h,compared to merely 2 h for the undoped sample.This research highlights the potential of fd orbital hybridization in enhancing the efficacy of copper-based catalysts for CO_(2)RR,pointing towards a promising direction for the development of durable,high-performance electrocatalysts for sustainable chemical synthesis.
基金supported by the National Key R&D Program of China[2021YFC2103500]National Natural Science Foundation of China(22211530047)+1 种基金Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project[grant numbers:TSBICIP-KJGG-009]the Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology.
文摘For decades micoorganisms have been engineered for the utilization of lignocellulose-based second-generation (2G) feedstocks, but with theconcerns of increased levels of atmospheric CO_(2) causing global warming there is an emergent need to transition from the utilization of 2Gfeedstocks to third-generation (3G) feedstocks such as CO_(2) and its derivatives. Here, we established a yeast platform that is capable ofsimultaneously converting 2G and 3G feedstocks into bulk and value-added chemicals. We demonstrated that by adopting 3G substrates such asCO_(2) and formate, the conversion of 2G feedstocks could be substantially improved. Specifically, formate could provide reducing power andenergy for xylose conversion into valuable chemicals. Simultaneously, it can form a concentrated CO_(2) pool inside the cell, providing thermodynamically and kinetically favoured amounts of precursors for CO_(2) fixation pathways, e.g., the Calvin–Benson–Bassham (CBB) cycle.Furthermore, we demonstrated that formate could directly be utilized as a carbon source by yeast to synthesize endogenous amino acids. Theengineered strain achieved a one-carbon (C1) assimilation efficiency of 9.2%, which was the highest efficiency observed in the co-utilization of2G and 3G feedstocks. We applied this strategy for productions of both bulk and value-added chemicals, including ethanol, free fatty acids(FFAs), and longifolene, resulting in yield enhancements of 18.4%, 49.0%, and ~100%, respectively. The strategy demonstrated here for coutilization of 2G and 3G feedstocks sheds lights on both basic and applied research for the up-coming establishment of 3G biorefineries.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.
基金financially supported by the National Natural Science Foundation of China (Nos. 22378300 and 21878215)National Key Research and Development Program of China (No.2022YFB3805202)+3 种基金Key Research and Development Program of Zhejiang Province (No. 2021C03173)Ningbo Key Research and Development Project (No. 2022Z121)Program of Introducing Talents of Discipline to Universities (No.BP0618007)Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Membrane technology has become one of the most promising separation technologies for its energy saving, high separation efficiency, environmental friendliness, and economic feasibility. Covalent organic frameworks(COFs) with intrinsically high porosity, controllable pore size, uniform pore size distribution and long-range ordered channel structure, have emerged as next-generation materials to fabricate advanced separation membranes. This feature article summarizes some latest studies in the development of pure COF membranes in our lab, including their fabrication and applications in chemical separations. Finally, current challenges facing high-performance COF separation membranes are discussed.