In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy R...In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830046,China.展开更多
Tin-based materials with high theoretical capacity and suitable working voltage are ideal anode materials for lithium-ion batteries(LIBs). However, to overcome their shortcomings(volume expansion and inferior stabilit...Tin-based materials with high theoretical capacity and suitable working voltage are ideal anode materials for lithium-ion batteries(LIBs). However, to overcome their shortcomings(volume expansion and inferior stability), the preparation processes are usually complicated and expensive. Herein, a tin-based metal-organic complex(tin 1,2-benzenedicarboxylic acid, Sn-BDC)with one-dimensional microbelt morphology is synthesized by a facile, rapid and low-cost co-precipitation method, and served as anode material for LIBs without any post-treatment. Sn-BDC exhibits a high reversible capacity with609/440 m Ah·g^(-1) at 50/2000 m A·g^(-1), and robust cycling stability of 856 m Ah·g^(-1) after 200 cycles at 200 m A·g^(-1),which are obviously superior to that of the Sn Ox/C counterparts. Moreover, an electrochemical reconstruction perspective on the lithium storage mechanism of Sn-BDC is proposed by systematic ex-situ characterizations. The reconstructed SnO_(2) replaces Sn-BDC and becomes the active material in the subsequent cycles. As the by-product of the lithiation reaction, the formed Li-based metal-organic complex(Li-BDC, wrapped around the reconstructed SnO_(2)) plays an important role in alleviating volume expansion and accelerating the charge transfer kinetics.This work is beneficial to design and construct the new electrode materials based on the electrochemical reconstruction for advanced LIBs.展开更多
Nitrogen oxides(NO_(x))from diesel engine exhaust,is one of the major sources of environmental pollution.Currently,selective catalytic reduction with ammonia(NH_(3)-SCR)is considered to be the most effective protocol ...Nitrogen oxides(NO_(x))from diesel engine exhaust,is one of the major sources of environmental pollution.Currently,selective catalytic reduction with ammonia(NH_(3)-SCR)is considered to be the most effective protocol for reducing NO_(x)emissions.Nowadays,zeolitebased NH_(3)-SCR catalysts have been industrialized and widespread used in this field.Nevertheless,with the increasingly stringent environmental regulations and implementation of the requirement of“zero emission”of diesel engine exhaust,it is extremely urgent to prepare catalysts with superior NH_(3)-SCR activity and exceptional resistance to poisons(SO2,alkali metals,hydrocarbons,etc.).Core-shell structure zeolite-based catalysts(CSCs)have shown great promise in NH_(3)-SCR of NO_(x)in recent years by virtue of its relatively higher low-temperature activity,broader operation temperature window and outstanding resistance to poisons.This review mainly focuses on the recent progress of CSCs for NH_(3)-SCR of NO_(x)with three extensively investigated SSZ-13,ZSM-5,Beta zeolites as cores.The reaction mechanisms of resistance to sulfur poisoning,alkali metal poisoning,hydrocarbon poisoning,and hydrothermal aging are summarized.Moreover,the important role of interfacial effect between core and shell in the reaction of NH_(3)-SCR was clarified.Finally,the future development and application outlook of CSCs are prospected.展开更多
CO_(2) photoreduction into carbon-based chemicals has been considered as an appropriate way to alleviate the energy issue and greenhouse effect.Herein,the 5,10,15,20-tetra(4-carboxyphenyl)porphyrin cobalt(II)(CoTCPP)h...CO_(2) photoreduction into carbon-based chemicals has been considered as an appropriate way to alleviate the energy issue and greenhouse effect.Herein,the 5,10,15,20-tetra(4-carboxyphenyl)porphyrin cobalt(II)(CoTCPP)has been integrated with BiOBr microspheres and formed the CoTCPP/BiOBr composite.The as-prepared CoTCPP/BiOBr-2 composite shows optimized photocatalytic performance for CO_(2) conversion into CO and CH_(4) upon irradiation with 300 W Xe lamp,which is 2.03 and 2.58 times compared to that of BiOBr,respectively.The introduced CoTCPP significantly enhanced light absorption properties,promoted rapid separation of photogenerated carriers and boosted the chemisorption of CO_(2) molecules.The metal Co^(2+) at the center of the porphyrin molecules also acts as adsorption center for CO_(2) molecules,accelerating the CO_(2) conversion into CO and CH_(4).The possible mechanism of CO_(2) photoreduction was explored by in-situ FT-IR spectra.This work offers a new possibility for the preparation of advanced photocatalysts.展开更多
Catalytic hydrogenation of CO_(2)to ethanol is a promising solution to address the greenhouse gas(GHG)emissions,but many current catalysts face efficiency and cost challenges.Cobalt based catalysts are frequently exam...Catalytic hydrogenation of CO_(2)to ethanol is a promising solution to address the greenhouse gas(GHG)emissions,but many current catalysts face efficiency and cost challenges.Cobalt based catalysts are frequently examined due to their abundance,cost-efficiency,and effectiveness in the reaction,where managing the Co^(0)to Co^(δ+)ratio is essential.In this study,we adjusted support nature(Al_(2)O_(3),MgO-MgAl_(2)O_(4),and MgO)and reduction conditions to optimize this balance of Co^(0)to Co^(δ+)sites on the catalyst surface,enhancing ethanol production.The selectivity of ethanol reached 17.9%in a continuous flow fixed bed micro-reactor over 20 mol%Co@MgO-MgAl_(2)O_(4)(CoMgAl)catalyst at 270°C and 3.0 MPa,when reduced at 400°C for 8 h.Characterisation results coupled with activity analysis confirmed that mild reduction condition(400°C,10%H_(2)balance N_(2),8 h)with intermediate metal support interaction favoured the generation of partially reduced Co sites(Co^(δ+)and Co^(0)sites in single atom)over MgO-MgAl_(2)O_(4)surface,which promoted ethanol synthesis by coupling of dissociative(CHx^(∗))/non-dissociative(CHxO^(∗))intermediates,as confirmed by density functional theory analysis.Additionally,the CoMgAl,affordably prepared through the coprecipitation method,offers a potential alternative for CO_(2)hydrogenation to yield valuable chemicals.展开更多
This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste,an underutilized agricultural byproduct.Microwave-assisted production offers faster heating,lower ener...This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste,an underutilized agricultural byproduct.Microwave-assisted production offers faster heating,lower energy consumption,and better process control compared to conventionalmethods.It also enhances pore development,resulting in larger,cleaner,and more uniform pores,making the activated carbon more effective for adsorption.The microwave-assisted process significantly accelerates production,reducing the required time to just 10 min at a power of 400 W.Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%,ash content of 5.51%,volatile matter of 6.96%,fixed carbon of 75.79%,and an iodine number of 790.97 g iodine/100 g.Scanning Electron Microscopy(SEM)analysis confirms the formation of larger,cleaner,and smoother pores,contributing to increased porosity and pore size.Additionally,Energy Dispersive X-ray(EDX)analysis identifies key elements in the lemongrass waste,with carbon being the dominant component at 75.57%.The Brunauer-Emmett-Teller(BET)surface area is measured at 818 m^(2)/g,with an average pore diameter of 1.91 nm,classifying the material as microporous.The activated carbon,meeting quality standards,is applied as an adsorbent in acid mine drainage(AMD)treatment,with varying mass concentrations introduced intowastewater samples.Adsorption tests confirmthat the microparticle carbon adsorption profile follows the Langmuir model,indicating a monolayer adsorption process.Furthermore,adsorption kineticswere analyzed over different time intervals,revealing that the process alignswith both pseudo-first-order(PFO)and pseudo-second-order(PSO)models,with all cases predominantly following the PFO rate equation.展开更多
P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process o...P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.展开更多
Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of C...Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.展开更多
The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there r...The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there remains a lack of consensus on fundamental properties such as diffusion behavior and the nature of hydrogen bonding in confined environments.In this work,we investigated the influence of confinement on proton transfer in water confined within graphene sheets at various spacings by ab initio molecule dynamic and multiscale analysis with time evolution of structural properties,graph theory and persistent homology.We found that reducing the graphene interlayer distance while maintaining water density close to that of bulk water leads to a decrease in proton transfer frequency.In contrast,reducing the interlayer distance without maintaining bulk-like water density results in an increase in proton transfer frequency.This difference is mainly due to the confinement conditions:when density is unchanged,the hydrogen bond network remains similar with significant layering,while compressive stress that increases density leads to a more planar hydrogen bond network,promoting faster proton transfer.Our findings elucidate the complex relationship between confinement and proton transfer dynamics,with implications for understanding proton transport in confined environments,relevant to energy storage and material design.展开更多
Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environment...Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environmental situation.This issue increases the concern for the environment and encourages the usage of alternative materials.Cellulose nanofibrils(CNF)are abundant and biodegradable,which makes them ideal candidates to replace plastic coatings.The ability to form H-bonds between the hydroxyl groups makes coated paper with CNF have good strength,but poor barrier properties.The barrier properties can be improved by grafting DMAEMA or HEMA onto CNF(CNF-g-PDMAEMA and CNF-g-PHEMA,respectively).Thus,the objective of this study was to modify CNF chemically to enhance the barrier properties of the food packaging paper.It was found that paper coated with CNFg-PDMAEMA and CNF-g-PHEMA exhibited improvements in mechanical and barrier properties while maintaining the desired viscosity for the coating process.The water contact angle increased for paper coated with CNF-g-PHEMA and CNF-g-PDMAEMA,reaching a maximum of 97.51°and 92.58°,respectively with the decreasing Cobb_(60) values by 49% and 11%.The oil absorption was also reduced for both coated papers compared to the blank paper.Mechanical properties improved,as indicated by a 3% increase in tensile strength for paper coated with CNF-g-PHEMA and a 5% for paper coated with CNF-g-PDMAEMA.The results indicated significant potential for the application of modified CNF in coatings for food packaging paper.Noteworthy,the grafting process should be improved to enhance the mechanical and barrier properties of the coated paper.展开更多
Metal-nitrogen-carbon(M-N-C)single-atom catalysts are widely utilized in various energy-related catalytic processes,offering a highly efficient and cost-effective catalytic system with significant potential.Recently,c...Metal-nitrogen-carbon(M-N-C)single-atom catalysts are widely utilized in various energy-related catalytic processes,offering a highly efficient and cost-effective catalytic system with significant potential.Recently,curvature-induced strain has been extensively demonstrated as a powerful tool for modulating the catalytic performance of M-N-C catalysts.However,identifying optimal strain patterns using density functional theory(DFT)is computationally intractable due to the high-dimensional search space.Here,we developed a graph neural network(GNN)integrated with an advanced topological data analysis tool-persistent homology-to predict the adsorption energy response of adsorbate under proposed curvature patterns,using nitric oxide electroreduction(NORR)as an example.Our machine learning model achieves high accuracy in predicting the adsorption energy response to curvature,with a mean absolute error(MAE)of 0.126 eV.Furthermore,we elucidate general trends in curvature-modulated adsorption energies of intermediates across various metals and coordination environments.We recommend several promising catalysts for NORR that exhibit significant potential for performance optimization via curvature modulation.This methodology can be readily extended to describe other non-bonded interactions,such as lattice strain and surface stress,providing a versatile approach for advanced catalyst design.展开更多
Preferential oxidation of CO(CO-PROX)in H_(2)-rich streams is highly important for purifying the industrial grade H_(2)used in proton-exchange-membrane fuel cells(PEMFC),but it is still limited to a relatively narrow ...Preferential oxidation of CO(CO-PROX)in H_(2)-rich streams is highly important for purifying the industrial grade H_(2)used in proton-exchange-membrane fuel cells(PEMFC),but it is still limited to a relatively narrow operation temperature window.In this study,the trace amounts of Cu are used to modify a Pt/Al_(2)O_(3)catalyst.The introduced Cu_(2+)species are atomically anchored on Pt nanoparticles through strong electrostatic adsorption.展开更多
With the pressing concern of the climate change,hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy.In this case,the role of membrane-based separatio...With the pressing concern of the climate change,hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy.In this case,the role of membrane-based separation cannot be neglected since,compared with other conventional process,membrane-based process is more effective and consumes less energy.Regarding this,metal-based membranes,particularly palladium,are usually employed for hydrogen separation because of its high selectivity.However,with the advancement of various microporous materials,the status quo of the metal-based membranes could be challenged since,compared with the metal-based membranes,they could offer better hydrogen separation performance and could also be cheaper to be produced.In this article,the advancement of membranes fabricated from five main microporous materials,namely silica-based membranes,zeolite membranes,carbon-based membranes,metal organic frameworks/covalent organic frameworks(MOF/COF)membranes and microporous polymeric membranes,for hydrogen separation from light gases are extensively discussed.Their performances are then summarized to give further insights regarding the pathway that should be taken to direct the research direction in the future.展开更多
Soft rot is a destructive disease that inflicts significant losses on agricultural production and the economy post-harvest.Biocontrol strategies based on antagonistic microorganisms have a broad application prospect t...Soft rot is a destructive disease that inflicts significant losses on agricultural production and the economy post-harvest.Biocontrol strategies based on antagonistic microorganisms have a broad application prospect to fight against plant pathogens.This study utilized fluorescence-activated droplet sorting(FADS)technology as an alternative to traditional plate culture methods to isolate microorganisms with antagonistic activity against the soft rot pathogen Erwinia carotovora Ecc15.Initially,the culture performance of the FADS platform was evaluated by analyzing bacterial diversity in droplet culture samples and agar plate culture samples,our data showed that droplet culture exhibited higher species richness and diversity than plate culture,and more than 95%of the operational taxonomic units(OTUs)in the droplet samples belonged to the rare biosphere.Additionally,we developed a green fluorescent protein(GFP)-Ecc15-based FADS screening system,which achieved an enrichment ratio of up to 148.Using this system,we successfully screened 32 antagonistic bacteria from rhizosphere soil sample of healthy konjac plants,and some may be novel microbial resources,including the genera Lelliottia,Buttiauxella and Leclercia.Notably,strain D-62 exhibited the strongest antibacterial ability against Ecc15,with an inhibition zone diameter of(20.86±1.56)mm.In vivo experiments conducted on the corms of Amorphophallus konjac demonstrated that strain D-62 could effectively reduce the infection ability of Ecc15 to the corms,indicating that strain D-62 has the potential to be developed as a biocontrol agent.Our findings suggested that the FADS screening system showed a screening efficiency approximately 3×10^(3)times higher than plate screening system,while significantly reducing costs of infrastructure,labor and consumables,it provides theoretical guidance for the screening of other plant pathogen biocontrol bacteria.展开更多
Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is r...Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is regarded as a promising process depending on the superior electron transfer and visible light utilization of photocatalyst.Herein,the nonstoichiometry MoO_(3-x)with outstanding photoresponse ability is prepared and modified by imidazole-based ionic liquid[C_(12)mim]Cl to upgrade electronic structure.The interface H-bonding between MoO_(3-x)and[C_(12)mim]Cl regard as electronic transfer channel and the recombination of e^(-)-h^(+)pairs is effectively inhibited with the modification of[C_(12)mim]Cl.Deep desulfurization rate of 96.6%can be reached within 60 min and the MoO_(3-x)/[C_(12)mim]Cl(MoC_(12))photocatalyst demonstrated outstanding cyclic stability within 7 cycles in an extraction coupled photocatalytic oxidation desulfurization(ECPODS)system.The study provides a new perspective on enhancing photocatalytic desulfurization through defect engineering and surface modification.展开更多
Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination...Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination interface by constructing a fast electron transfer channel between Cu_(2)V_(2)O_(7)(CVO)and BiVO4(BVO).X-ray absorption spectroscopy(XAS)and theoretical calculations results confirm that CVO and BVO between interfaces are bonded by the way of unsaturated coordination oxygen(Ouc).The Ouc optimizes the O-O coupled energy barrier at the V active site and promotes the disconnection of O-H bond,which increases the photocurrent intensity of CVO by 6 times.In addition,due to the high electronegativity of the Ouc,the bonding energies of Bi-O and Cu-O at the interface are enhanced,resulting in the long-term stability of the photoanode during the water splitting.Finally,by integrating the working electrode with a polysilicon solar cell,we assembled a device that demonstrated exceptional catalytic performance,achieving a hydrogen production rate of 100.6μmol·cm^(-2),and maintaining a hydrogen-to-oxygen volume ratio of 2:1 after continuous operation for 4 h.This discovery aids in a deeper understanding of photoanode design and offers further insights for industrial applications.展开更多
Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional th...Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.展开更多
Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events a...Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health,driving a growing dependence on cooling and heating energy sources.Consequently,efficient thermal management has become a central focus of energy research.Traditional thermal management systems consume substantial energy,further contributing to greenhouse gas emissions.In contrast,emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives.However,achieving year-round thermal management without additional energy input remains a formidable challenge.Recently,dynamic radiative thermal management technologies have emerged as the most promising solution,offering the potential for energy-efficient adaptation across seasonal variations.This review systematically presents recent advancements in dynamic radiative thermal management,covering fundamental principles,switching mechanisms,primary materials,and application areas.Additionally,the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed.By highlighting their transformative potential,this review provides insights into the design and industrial scalability of these innovations,with the ultimate aim of promoting renewable energy integration in thermal management applications.展开更多
Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a...Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.展开更多
In order to further improve the potential application of nickel-cobalt oxide(NiCoO) in supercapacitors,we use controlled calcination of diffe rent Ni-Co-MOF([NiCo(HBTC)(4,4’-bipy)]) composites to obtain five kinds of...In order to further improve the potential application of nickel-cobalt oxide(NiCoO) in supercapacitors,we use controlled calcination of diffe rent Ni-Co-MOF([NiCo(HBTC)(4,4’-bipy)]) composites to obtain five kinds of nickel doped NiCoO(N-NiCoO) with different Ni/Co molar ratio.These N-NiCoO materials with unique hexagonal nanoplates structure,high specific surface area and high porosity indicate high and stable electrochemical activity.In particular,N-NiCoO-2 with a Ni/Co molar ratio of 2:1 exhibits the highest 945.79 F/g specific capacitance at 1 A/g and a high cycle stability of only 6.7% attenuation after 5000 cycles.Apart from the certain percentage of NiCoO with higher conductivity,nitrogen doping provides more reactive sites and the specific porous hexagonal nanoplates structure of the product itself accelerate electron transfer and promote electrolyte diffusion can more effectively enhance the electrochemical performance.Therefore,N-NiCoO synthesized via a simple method exhibit exciting potential and can be used as an electrode material for supercapacitors with good performance.展开更多
文摘In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830046,China.
基金financially supported by the National Natural Science Foundations of China (Nos.51904152,21965033 and U2003216)the Natural Science Foundations of Henan Province (No.222300420502)+1 种基金the Program for Science&Technology Innovation Talents in Universities of Henan Province (No.20HASTIT020)the Key Science and Technology Program of Henan Province (No.222102240044)。
文摘Tin-based materials with high theoretical capacity and suitable working voltage are ideal anode materials for lithium-ion batteries(LIBs). However, to overcome their shortcomings(volume expansion and inferior stability), the preparation processes are usually complicated and expensive. Herein, a tin-based metal-organic complex(tin 1,2-benzenedicarboxylic acid, Sn-BDC)with one-dimensional microbelt morphology is synthesized by a facile, rapid and low-cost co-precipitation method, and served as anode material for LIBs without any post-treatment. Sn-BDC exhibits a high reversible capacity with609/440 m Ah·g^(-1) at 50/2000 m A·g^(-1), and robust cycling stability of 856 m Ah·g^(-1) after 200 cycles at 200 m A·g^(-1),which are obviously superior to that of the Sn Ox/C counterparts. Moreover, an electrochemical reconstruction perspective on the lithium storage mechanism of Sn-BDC is proposed by systematic ex-situ characterizations. The reconstructed SnO_(2) replaces Sn-BDC and becomes the active material in the subsequent cycles. As the by-product of the lithiation reaction, the formed Li-based metal-organic complex(Li-BDC, wrapped around the reconstructed SnO_(2)) plays an important role in alleviating volume expansion and accelerating the charge transfer kinetics.This work is beneficial to design and construct the new electrode materials based on the electrochemical reconstruction for advanced LIBs.
基金supported by the Key Technologies Research and Development Program(No.2022YFB3504102)the National Natural Science Foundation of China(Nos.22035009,22002050,and 22202087)+2 种基金the National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2020B01)Fuyang Normal University Open Fund(No.FSKFKT006D)the Postdoctoral Science Foundation of China(Nos.2022T150765 and 2020M683154).
文摘Nitrogen oxides(NO_(x))from diesel engine exhaust,is one of the major sources of environmental pollution.Currently,selective catalytic reduction with ammonia(NH_(3)-SCR)is considered to be the most effective protocol for reducing NO_(x)emissions.Nowadays,zeolitebased NH_(3)-SCR catalysts have been industrialized and widespread used in this field.Nevertheless,with the increasingly stringent environmental regulations and implementation of the requirement of“zero emission”of diesel engine exhaust,it is extremely urgent to prepare catalysts with superior NH_(3)-SCR activity and exceptional resistance to poisons(SO2,alkali metals,hydrocarbons,etc.).Core-shell structure zeolite-based catalysts(CSCs)have shown great promise in NH_(3)-SCR of NO_(x)in recent years by virtue of its relatively higher low-temperature activity,broader operation temperature window and outstanding resistance to poisons.This review mainly focuses on the recent progress of CSCs for NH_(3)-SCR of NO_(x)with three extensively investigated SSZ-13,ZSM-5,Beta zeolites as cores.The reaction mechanisms of resistance to sulfur poisoning,alkali metal poisoning,hydrocarbon poisoning,and hydrothermal aging are summarized.Moreover,the important role of interfacial effect between core and shell in the reaction of NH_(3)-SCR was clarified.Finally,the future development and application outlook of CSCs are prospected.
基金financially supported by National Natural Science Foundation of China(Nos.22138011,22108106 and 22108108)China Postdoctoral Science Foundation(Nos.2022M721380 and 2020M680065)Hong Kong Scholar Program(XJ2021021).
文摘CO_(2) photoreduction into carbon-based chemicals has been considered as an appropriate way to alleviate the energy issue and greenhouse effect.Herein,the 5,10,15,20-tetra(4-carboxyphenyl)porphyrin cobalt(II)(CoTCPP)has been integrated with BiOBr microspheres and formed the CoTCPP/BiOBr composite.The as-prepared CoTCPP/BiOBr-2 composite shows optimized photocatalytic performance for CO_(2) conversion into CO and CH_(4) upon irradiation with 300 W Xe lamp,which is 2.03 and 2.58 times compared to that of BiOBr,respectively.The introduced CoTCPP significantly enhanced light absorption properties,promoted rapid separation of photogenerated carriers and boosted the chemisorption of CO_(2) molecules.The metal Co^(2+) at the center of the porphyrin molecules also acts as adsorption center for CO_(2) molecules,accelerating the CO_(2) conversion into CO and CH_(4).The possible mechanism of CO_(2) photoreduction was explored by in-situ FT-IR spectra.This work offers a new possibility for the preparation of advanced photocatalysts.
文摘Catalytic hydrogenation of CO_(2)to ethanol is a promising solution to address the greenhouse gas(GHG)emissions,but many current catalysts face efficiency and cost challenges.Cobalt based catalysts are frequently examined due to their abundance,cost-efficiency,and effectiveness in the reaction,where managing the Co^(0)to Co^(δ+)ratio is essential.In this study,we adjusted support nature(Al_(2)O_(3),MgO-MgAl_(2)O_(4),and MgO)and reduction conditions to optimize this balance of Co^(0)to Co^(δ+)sites on the catalyst surface,enhancing ethanol production.The selectivity of ethanol reached 17.9%in a continuous flow fixed bed micro-reactor over 20 mol%Co@MgO-MgAl_(2)O_(4)(CoMgAl)catalyst at 270°C and 3.0 MPa,when reduced at 400°C for 8 h.Characterisation results coupled with activity analysis confirmed that mild reduction condition(400°C,10%H_(2)balance N_(2),8 h)with intermediate metal support interaction favoured the generation of partially reduced Co sites(Co^(δ+)and Co^(0)sites in single atom)over MgO-MgAl_(2)O_(4)surface,which promoted ethanol synthesis by coupling of dissociative(CHx^(∗))/non-dissociative(CHxO^(∗))intermediates,as confirmed by density functional theory analysis.Additionally,the CoMgAl,affordably prepared through the coprecipitation method,offers a potential alternative for CO_(2)hydrogenation to yield valuable chemicals.
基金funded by the Ministry of Research,Technology,and Higher Education under Grant Number B/67/D.D3/KD.02.00/2019as part of the BPPDN(Beasiswa Pendidikan Pascasarjana Dalam Negeri—Domestic Postgraduate Education Scholarship)program.
文摘This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste,an underutilized agricultural byproduct.Microwave-assisted production offers faster heating,lower energy consumption,and better process control compared to conventionalmethods.It also enhances pore development,resulting in larger,cleaner,and more uniform pores,making the activated carbon more effective for adsorption.The microwave-assisted process significantly accelerates production,reducing the required time to just 10 min at a power of 400 W.Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%,ash content of 5.51%,volatile matter of 6.96%,fixed carbon of 75.79%,and an iodine number of 790.97 g iodine/100 g.Scanning Electron Microscopy(SEM)analysis confirms the formation of larger,cleaner,and smoother pores,contributing to increased porosity and pore size.Additionally,Energy Dispersive X-ray(EDX)analysis identifies key elements in the lemongrass waste,with carbon being the dominant component at 75.57%.The Brunauer-Emmett-Teller(BET)surface area is measured at 818 m^(2)/g,with an average pore diameter of 1.91 nm,classifying the material as microporous.The activated carbon,meeting quality standards,is applied as an adsorbent in acid mine drainage(AMD)treatment,with varying mass concentrations introduced intowastewater samples.Adsorption tests confirmthat the microparticle carbon adsorption profile follows the Langmuir model,indicating a monolayer adsorption process.Furthermore,adsorption kineticswere analyzed over different time intervals,revealing that the process alignswith both pseudo-first-order(PFO)and pseudo-second-order(PSO)models,with all cases predominantly following the PFO rate equation.
文摘P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.
基金the financial support from National Natural Science Foundation of China (No. 21503097)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_3905)。
文摘Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.
基金supported by the Natural Science Foundation of Xiamen,China(3502Z202472001)the National Natural Science Foundation of China(22402163,22021001,21925404,T2293692,and 22361132532).
文摘The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there remains a lack of consensus on fundamental properties such as diffusion behavior and the nature of hydrogen bonding in confined environments.In this work,we investigated the influence of confinement on proton transfer in water confined within graphene sheets at various spacings by ab initio molecule dynamic and multiscale analysis with time evolution of structural properties,graph theory and persistent homology.We found that reducing the graphene interlayer distance while maintaining water density close to that of bulk water leads to a decrease in proton transfer frequency.In contrast,reducing the interlayer distance without maintaining bulk-like water density results in an increase in proton transfer frequency.This difference is mainly due to the confinement conditions:when density is unchanged,the hydrogen bond network remains similar with significant layering,while compressive stress that increases density leads to a more planar hydrogen bond network,promoting faster proton transfer.Our findings elucidate the complex relationship between confinement and proton transfer dynamics,with implications for understanding proton transport in confined environments,relevant to energy storage and material design.
基金supported by Hibah Penelitian Fundamental Reguler Kementerian Pendidikan,Kebudayaan,Riset dan Teknologi under funding year of 2024 with contract number:051/E5/PG.02.00.PL/2024NKB-903/UN2.RST/HKP.05.00/2024.
文摘Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environmental situation.This issue increases the concern for the environment and encourages the usage of alternative materials.Cellulose nanofibrils(CNF)are abundant and biodegradable,which makes them ideal candidates to replace plastic coatings.The ability to form H-bonds between the hydroxyl groups makes coated paper with CNF have good strength,but poor barrier properties.The barrier properties can be improved by grafting DMAEMA or HEMA onto CNF(CNF-g-PDMAEMA and CNF-g-PHEMA,respectively).Thus,the objective of this study was to modify CNF chemically to enhance the barrier properties of the food packaging paper.It was found that paper coated with CNFg-PDMAEMA and CNF-g-PHEMA exhibited improvements in mechanical and barrier properties while maintaining the desired viscosity for the coating process.The water contact angle increased for paper coated with CNF-g-PHEMA and CNF-g-PDMAEMA,reaching a maximum of 97.51°and 92.58°,respectively with the decreasing Cobb_(60) values by 49% and 11%.The oil absorption was also reduced for both coated papers compared to the blank paper.Mechanical properties improved,as indicated by a 3% increase in tensile strength for paper coated with CNF-g-PHEMA and a 5% for paper coated with CNF-g-PDMAEMA.The results indicated significant potential for the application of modified CNF in coatings for food packaging paper.Noteworthy,the grafting process should be improved to enhance the mechanical and barrier properties of the coated paper.
基金supported by the Natural Science Foundation of Xiamen,China(3502Z202472001)the National Natural Science Foundation of China(22402163,22021001,21925404,T2293692,and 22361132532)。
文摘Metal-nitrogen-carbon(M-N-C)single-atom catalysts are widely utilized in various energy-related catalytic processes,offering a highly efficient and cost-effective catalytic system with significant potential.Recently,curvature-induced strain has been extensively demonstrated as a powerful tool for modulating the catalytic performance of M-N-C catalysts.However,identifying optimal strain patterns using density functional theory(DFT)is computationally intractable due to the high-dimensional search space.Here,we developed a graph neural network(GNN)integrated with an advanced topological data analysis tool-persistent homology-to predict the adsorption energy response of adsorbate under proposed curvature patterns,using nitric oxide electroreduction(NORR)as an example.Our machine learning model achieves high accuracy in predicting the adsorption energy response to curvature,with a mean absolute error(MAE)of 0.126 eV.Furthermore,we elucidate general trends in curvature-modulated adsorption energies of intermediates across various metals and coordination environments.We recommend several promising catalysts for NORR that exhibit significant potential for performance optimization via curvature modulation.This methodology can be readily extended to describe other non-bonded interactions,such as lattice strain and surface stress,providing a versatile approach for advanced catalyst design.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3504200)the National Natural Science Foundation of China(Nos.U21A20326 and 22376063)+4 种基金the fund of the National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2020A05)the Fundamental Research Funds for the Central Universitiesthe funding received from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 897197.Y.L.(CSC No.202006740085)is grateful for thegrant from the China Scholarship Councilthe ICREA Academia program and grants MICINN/FEDER PID2021124572OB-C31 and GC 2021 SGR 01061part of Maria de Maeztu Units of Excellence Programme CEX2023-001300-M/funded by MCIN/AEI/https://doi.org/10.13039/501100011033
文摘Preferential oxidation of CO(CO-PROX)in H_(2)-rich streams is highly important for purifying the industrial grade H_(2)used in proton-exchange-membrane fuel cells(PEMFC),but it is still limited to a relatively narrow operation temperature window.In this study,the trace amounts of Cu are used to modify a Pt/Al_(2)O_(3)catalyst.The introduced Cu_(2+)species are atomically anchored on Pt nanoparticles through strong electrostatic adsorption.
基金funding from the Alexander von Humboldt Postdoctoral Fellowship(Ref-3.3-GBR-1219268-HFST-P)。
文摘With the pressing concern of the climate change,hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy.In this case,the role of membrane-based separation cannot be neglected since,compared with other conventional process,membrane-based process is more effective and consumes less energy.Regarding this,metal-based membranes,particularly palladium,are usually employed for hydrogen separation because of its high selectivity.However,with the advancement of various microporous materials,the status quo of the metal-based membranes could be challenged since,compared with the metal-based membranes,they could offer better hydrogen separation performance and could also be cheaper to be produced.In this article,the advancement of membranes fabricated from five main microporous materials,namely silica-based membranes,zeolite membranes,carbon-based membranes,metal organic frameworks/covalent organic frameworks(MOF/COF)membranes and microporous polymeric membranes,for hydrogen separation from light gases are extensively discussed.Their performances are then summarized to give further insights regarding the pathway that should be taken to direct the research direction in the future.
基金supported by the Guizhou Province High-level Innovative Talent Project(Qiankehe Platform Talent-GCC[2022]027-1)the National Key Research and Development Program of China(2019YFA0904800).
文摘Soft rot is a destructive disease that inflicts significant losses on agricultural production and the economy post-harvest.Biocontrol strategies based on antagonistic microorganisms have a broad application prospect to fight against plant pathogens.This study utilized fluorescence-activated droplet sorting(FADS)technology as an alternative to traditional plate culture methods to isolate microorganisms with antagonistic activity against the soft rot pathogen Erwinia carotovora Ecc15.Initially,the culture performance of the FADS platform was evaluated by analyzing bacterial diversity in droplet culture samples and agar plate culture samples,our data showed that droplet culture exhibited higher species richness and diversity than plate culture,and more than 95%of the operational taxonomic units(OTUs)in the droplet samples belonged to the rare biosphere.Additionally,we developed a green fluorescent protein(GFP)-Ecc15-based FADS screening system,which achieved an enrichment ratio of up to 148.Using this system,we successfully screened 32 antagonistic bacteria from rhizosphere soil sample of healthy konjac plants,and some may be novel microbial resources,including the genera Lelliottia,Buttiauxella and Leclercia.Notably,strain D-62 exhibited the strongest antibacterial ability against Ecc15,with an inhibition zone diameter of(20.86±1.56)mm.In vivo experiments conducted on the corms of Amorphophallus konjac demonstrated that strain D-62 could effectively reduce the infection ability of Ecc15 to the corms,indicating that strain D-62 has the potential to be developed as a biocontrol agent.Our findings suggested that the FADS screening system showed a screening efficiency approximately 3×10^(3)times higher than plate screening system,while significantly reducing costs of infrastructure,labor and consumables,it provides theoretical guidance for the screening of other plant pathogen biocontrol bacteria.
基金supports from National Natural Science Foundation of China(Nos.22172066,22378176)supported by State Key Laboratory of Heavy Oil Processing.Supported by Jiangsu Collaborative Innovation Center of TechnologyMaterial of Water Treatment,Suzhou University of Science and Technology.
文摘Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is regarded as a promising process depending on the superior electron transfer and visible light utilization of photocatalyst.Herein,the nonstoichiometry MoO_(3-x)with outstanding photoresponse ability is prepared and modified by imidazole-based ionic liquid[C_(12)mim]Cl to upgrade electronic structure.The interface H-bonding between MoO_(3-x)and[C_(12)mim]Cl regard as electronic transfer channel and the recombination of e^(-)-h^(+)pairs is effectively inhibited with the modification of[C_(12)mim]Cl.Deep desulfurization rate of 96.6%can be reached within 60 min and the MoO_(3-x)/[C_(12)mim]Cl(MoC_(12))photocatalyst demonstrated outstanding cyclic stability within 7 cycles in an extraction coupled photocatalytic oxidation desulfurization(ECPODS)system.The study provides a new perspective on enhancing photocatalytic desulfurization through defect engineering and surface modification.
基金supported by the Natural Science Foundation of China(Nos.22278094 and 22379033)Guangdong Graduate Education Innovation Program(No.2023JGXM_102)+2 种基金the Basic and Applied Basic Research Program of Guangzhou(No.SL2024A03J00499)the University Innovation Team Scientific Research Project of Guangzhou(No.202235246)Hainan Province Graduate Innovation Research Project(No.Qhyb2023-143).
文摘Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination interface by constructing a fast electron transfer channel between Cu_(2)V_(2)O_(7)(CVO)and BiVO4(BVO).X-ray absorption spectroscopy(XAS)and theoretical calculations results confirm that CVO and BVO between interfaces are bonded by the way of unsaturated coordination oxygen(Ouc).The Ouc optimizes the O-O coupled energy barrier at the V active site and promotes the disconnection of O-H bond,which increases the photocurrent intensity of CVO by 6 times.In addition,due to the high electronegativity of the Ouc,the bonding energies of Bi-O and Cu-O at the interface are enhanced,resulting in the long-term stability of the photoanode during the water splitting.Finally,by integrating the working electrode with a polysilicon solar cell,we assembled a device that demonstrated exceptional catalytic performance,achieving a hydrogen production rate of 100.6μmol·cm^(-2),and maintaining a hydrogen-to-oxygen volume ratio of 2:1 after continuous operation for 4 h.This discovery aids in a deeper understanding of photoanode design and offers further insights for industrial applications.
基金supported by the National Natural Science Foundation of China(Nos.22102167 and U21A20317)。
文摘Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.
基金the Institute of Biomass & Functional Materials of Shaanxi University of Science and Technology for funding this research workfinancially supported by the National Natural Science Foundation of China (2207081675, 22278257, 22308209)+1 种基金the Key R&D Program of Shaanxi Province (2024SF-YBXM-586)the Project of Innovation Capability Support Program in Shaanxi Province (2024ZC-KJXX-005)
文摘Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health,driving a growing dependence on cooling and heating energy sources.Consequently,efficient thermal management has become a central focus of energy research.Traditional thermal management systems consume substantial energy,further contributing to greenhouse gas emissions.In contrast,emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives.However,achieving year-round thermal management without additional energy input remains a formidable challenge.Recently,dynamic radiative thermal management technologies have emerged as the most promising solution,offering the potential for energy-efficient adaptation across seasonal variations.This review systematically presents recent advancements in dynamic radiative thermal management,covering fundamental principles,switching mechanisms,primary materials,and application areas.Additionally,the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed.By highlighting their transformative potential,this review provides insights into the design and industrial scalability of these innovations,with the ultimate aim of promoting renewable energy integration in thermal management applications.
基金the Institute of Biomass&Functional Materials of Shaanxi University of Science and Technology for funding this research workfinancially supported by the National Natural Science Foundation of China(2207081675,22278257,22308209)+1 种基金the Key R&D Program of Shaanxi Province(2024SF-YBXM-586)the Project of Innovation Capability Support Program in Shaanxi Province(2024ZC-KJXX-005)。
文摘Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.21671170,21673203,21201010 and U1904215)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)+2 种基金Program for New Century Excellent Talents of the University in China(NCET,No.13-0645)the Six Talent Plan(No.2015-XCL-030)Qinglan Project。
文摘In order to further improve the potential application of nickel-cobalt oxide(NiCoO) in supercapacitors,we use controlled calcination of diffe rent Ni-Co-MOF([NiCo(HBTC)(4,4’-bipy)]) composites to obtain five kinds of nickel doped NiCoO(N-NiCoO) with different Ni/Co molar ratio.These N-NiCoO materials with unique hexagonal nanoplates structure,high specific surface area and high porosity indicate high and stable electrochemical activity.In particular,N-NiCoO-2 with a Ni/Co molar ratio of 2:1 exhibits the highest 945.79 F/g specific capacitance at 1 A/g and a high cycle stability of only 6.7% attenuation after 5000 cycles.Apart from the certain percentage of NiCoO with higher conductivity,nitrogen doping provides more reactive sites and the specific porous hexagonal nanoplates structure of the product itself accelerate electron transfer and promote electrolyte diffusion can more effectively enhance the electrochemical performance.Therefore,N-NiCoO synthesized via a simple method exhibit exciting potential and can be used as an electrode material for supercapacitors with good performance.