Certification is a conformity assessmenttool confirming that products (including services),processes,systems,and personnel meetthe relevant regulatory requirements.A certificationbody is a conformity assessment body e...Certification is a conformity assessmenttool confirming that products (including services),processes,systems,and personnel meetthe relevant regulatory requirements.A certificationbody is a conformity assessment body engaged inimplementing audits on whether products (includingservices),processes,systems,and personnel meetthe relevant regulatory requirements.Like othereconomic activities,certification is subject to risks.GB/T 27021-2007 Conformity assessmen-Requirementsfor bodies providing audit and certificationof management systems offers prescriptionsfor the risk control of certification bodies in carryingout certification activities,and requires certificationbodies to identify risks and arrange risk control.This paper analyzes the possible risks in certificationon the basis of understanding the related riskmanagement of the GB/T27021-2007 Standard,and proposes countermeasures for controllingrisks.展开更多
China's performance in the global economic crisis has attracted the world's attention. People are looking to China, eager to learn about the management level of Chinese government and enterprises, as well as product...China's performance in the global economic crisis has attracted the world's attention. People are looking to China, eager to learn about the management level of Chinese government and enterprises, as well as product quality. In these matters, China draws on the generally adopted worldwide practice in quality evaluation: the certification and accreditation system. This system simultaneously extends the basic national technical platform for external trade. Using the China Quality Mark Certification Group (CQM) as an example,展开更多
With the intensifying aging population,rural elderly care services are facing challenges such as uneven medical resources and inadequate facilities.Taking Qinhuangdao City as an example,this paper explores ways to imp...With the intensifying aging population,rural elderly care services are facing challenges such as uneven medical resources and inadequate facilities.Taking Qinhuangdao City as an example,this paper explores ways to improve rural elderly care services through the construction of a remote medical service network.This paper analyzes the current status of rural elderly care services in Qinhuangdao City,pointing out that issues such as the uneven distribution of medical resources between urban and rural areas,poor accessibility,and low service quality urgently need to be addressed.The necessity of accelerating the construction of a remote medical network is proposed,including reducing medical costs,optimizing resource allocation,and disease prevention.Specific measures cover aspects such as policy support,integration of medical and elderly care services,talent cultivation,and technology promotion.At the same time,the potential challenges and risks faced by the remote medical service network in improving rural elderly care services are evaluated,and corresponding countermeasures and suggestions are proposed.Research shows that remote medical care can effectively improve the quality of rural elderly care services and help achieve proper medical care for the elderly.展开更多
A compact low-profile dual-band Circularly Polarized(CP)microstrip antenna is proposed for the Bei Dou Navigation Satellite System(BDS).To achieve dual-band functionality,a single-layer multimode design is employed,in...A compact low-profile dual-band Circularly Polarized(CP)microstrip antenna is proposed for the Bei Dou Navigation Satellite System(BDS).To achieve dual-band functionality,a single-layer multimode design is employed,incorporating F-,L-,and T-shaped slots at the corners for CP performance.Additionally,a Defected Ground Structure(DGS)is implemented to further enhance the antenna's efficiency.A detailed parameter analysis is conducted to optimize the antenna's size and performance balance.After optimization,the final dimensions of the antenna are minimized while still meeting the design requirements.The prototype of the optimized antenna is fabricated and tested,demonstrating coverage of frequency bands from 1.182 GHz to 1.217 GHz and 1.547 GHz to 1.569 GHz.The antenna effectively supports dual-band CP for B1I and B2b frequency bands.A performance metric,the Ratio of relative Bandwidth to Volume(RBV),is introduced to evaluate the antenna's efficiency.Compared to similar designs,the proposed antenna offers a smaller size without sacrificing performance,making it well-suited for BDS airborne applications.展开更多
Very recently,upconversion luminescence(UCL)lifetime,as a powerful optical dimension,has attracted tremendous research interest due to its advantages of high information capacity and high photophysical stability.With ...Very recently,upconversion luminescence(UCL)lifetime,as a powerful optical dimension,has attracted tremendous research interest due to its advantages of high information capacity and high photophysical stability.With the implementation and emergence of endlessly fascinating UCL features,it is particularly meaningful to understand the photophysical mechanisms inside UCL materials to enable rational subdivision-level structure design,which is however currently far from sufficient.In this work,we take an ordinary upconversion nanoparticle as an example to prove that the UCL decay curves and corresponding lifetimes are indeed a collective response of the entire UCL system to excitations,that exhibits correlated,yet quite different properties from individual ions.A specially developed theoretical random walk model combined with an experimental lifetime control for Yb^(3+)/Er^(3+)UCL demonstrates that ene rgy diffusion principally alters the decay rate.Moreover,the different extent of the influence of energy diffusion on the emissions of ^(2)H_(11/2)/^(4)S_(3/2)(green)and ^(4)F_(9/2)(red)leads to an extremely uncommon crossover comparison of decay rates.This work provides new ideas for understanding decay dynamics and practical UCL lifetime manipulation methods.展开更多
The Eurasian beaver(Castor fiber Linnaeus,1758)can be considered a hydrological ecosystem engineer as it shapes environmental characteristics through its building activities and feeding behaviour.Even if several studi...The Eurasian beaver(Castor fiber Linnaeus,1758)can be considered a hydrological ecosystem engineer as it shapes environmental characteristics through its building activities and feeding behaviour.Even if several studies have so far reported beaver impact on multi-taxon biodiversity and forest regeneration,there is a lack of research on forest stand structure evolution following beaver direct activity on trees.This represents a pivotal topic for predicting restoration outcomes and reccommending sound silvicultural and management practices to maintain specific forest conditions.Specifically,the study aims at investigating forest stand structure and tree species diversity changes considering river variability,distance from the riverbank and beaver's gnawing activity intensity.The Eurasian beaver is only recently recolonising the three analysed Mediterranean rivers,but stand structure seems to be already significantly impacted by the species.The number of trees was reduced,increasing mean diameter at breast height at stand level,as most of the youngest and/or smaller trees are entirely cut down.Strongest structural variations can be detected in intensively impacted stands and in the forest portions closer to the riverbank.The absence of a significant effect on most of the diversity indices is likely due to the initially homogeneous composition of the tree layer in each stand and to the limited variety of beaver's diet within the sites.Future resprouting of secondary tree shoots,as well as beaver gnawing activity changes in intensity over time and space,can further produce variations in structural parameters and woody species diversity in the medium-and long-term period.Therefore,it will be crucial to further monitor the long-term effects,as structural shifts can produce significant effects on riparian ecosystem functions.展开更多
By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nucle...By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.展开更多
Wastewater plays a crucial role in deteriorating water quality and can significantly affect human health and ecosystems if discharged without proper treatment.Among available treatment methods,adsorption is often cons...Wastewater plays a crucial role in deteriorating water quality and can significantly affect human health and ecosystems if discharged without proper treatment.Among available treatment methods,adsorption is often considered an effective,relatively inexpensive,and environmentally friendly purification technique,but its efficiency depends on the sorbents used.The use of low-cost biosorbents with high adsorption capacity is widely studied.These include various biomaterials such as microalgae,cyanobacteria,fungi,and plant materials.The utilization of different biosorbents derived from plant waste,such as Paulownia wood,aspen,hickory,Ziziphus bark,peach tree shavings,as well as grasses such as red fescue and reed,and Sargassum algae in natural and modified forms,is a crucial research direction.Such studies highlight the potential to address waste issues by repurposing it as biosorbents.Several studies have examined the ability of different biosorbents to treat wastewater and suggested that the physicochemical properties of the material's surface,such as specific surface area,pore size,and pore volume,play a decisive role in adsorption capacity.A quantitative analysis of plant-based biosorbents will significantly aid in developing water treatment systems and achieving optimal adsorption through modifications of their physicochemical properties.Furthermore,the analysis will help understand the relative importance of each physicochemical property in determining adsorption capacity,thereby contributing to the implementation of treatment methods targeting specific pollutants.展开更多
Background:Neoadjuvant chemotherapy(NAC)significantly enhances clinical outcomes in patients with triple-negative breast cancer(TNBC);however,chemoresistance frequently results in treatment failure.Consequently,unders...Background:Neoadjuvant chemotherapy(NAC)significantly enhances clinical outcomes in patients with triple-negative breast cancer(TNBC);however,chemoresistance frequently results in treatment failure.Consequently,understanding the mechanisms underlying resistance and accurately predicting this phenomenon are crucial for improving treatment efficacy.Methods:Ultrasound images from 62 patients,taken before and after neoadjuvant therapy,were collected.Mitochondrial-related genes were extracted from a public database.Ultrasound features associated with NAC resistance were identified and correlated with significant mitochondrial-related genes.Subsequently,a prognostic model was developed and evaluated using the GSE58812 dataset.We also assessed this model alongside clinical factors and its ability to predict immunotherapy response.Results:A total of 32 significant differentially expressed genes in TNBC across three groups indicated a strong correlation with ultrasound features.Univariate and multivariate Cox regression analyses identified six genes as independent risk factors for TNBC prognosis.Based on these six mitochondrial-related genes,we constructed a TNBC prognostic model.The model’s risk scores indicated that high-risk patients generally have a poorer prognosis compared to low-risk patients,with the model demonstrating high predictive performance(p=0.002,AUC=0.745).This conclusion was further supported in the test set(p=0.026,AUC=0.718).Additionally,we found that high-risk patients exhibited more advanced tumor characteristics,while low-risk patients were more sensitive to common chemotherapy drugs and immunotherapy.The signature-related genes also predicted immunotherapy response with a high accuracy of 0.765.Conclusion:We identified resistance-related features from ultrasound images and integrated them with genomic data,enabling effective risk stratification of patients and prediction of the efficacy of neoadjuvant chemotherapy and immunotherapy in patients with TNBC.展开更多
Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threaten...Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars.展开更多
Superior compound coatings were prepared on CK45 steel surface by vanadium-nitrocarburizing duplex treatment in low-temperature salt bath.In this study,the microhardness,the phase constitution and the compositional di...Superior compound coatings were prepared on CK45 steel surface by vanadium-nitrocarburizing duplex treatment in low-temperature salt bath.In this study,the microhardness,the phase constitution and the compositional distribution in the coatings prepared under different conditions were systematically characterized.The results indicated that the reactions among activated vanadium,carbon and nitrogen atoms occurred on the steel surface,leading to the formation of compound coatings composed of outermost and compound layers.The mechanism for the formation of compound layer as well as the growth kinetics of the layer was also discussed.Upon the duplex treatment,the wear and corrosion resistances of steel surface were significantly improved.It was found that the growth kinetics of compound layer obeyed the parabolic law,with the activation energy of 122.82 kJ·moL^(-1).展开更多
On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in f...On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.展开更多
With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental ...With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.展开更多
SiC particle(SiCp)/Al composite materials were fabricated via powder packed resistance seam welding additive manufacturing.The influence of welding speed on microstructure and mechanical properties of the specimen was...SiC particle(SiCp)/Al composite materials were fabricated via powder packed resistance seam welding additive manufacturing.The influence of welding speed on microstructure and mechanical properties of the specimen was investigated,elucidating the formation and fracture mechanism of single-pass multi-layer deposition.The results demonstrate that a dense internal structure of the specimen characterized by uniformly dispersed SiCp embedded within the Al matrix is formed.However,particle agglomeration and porosity defects are observed.The porosity increases with the increase in welding speed,and the microstructure of the RSAM-24 specimen has the highest density,characterized by a density of 2.706 g/cm^(3)and a porosity of 1.672%.The mechanical properties of the specimens decrease as the welding speed increases.Optimal mechanical properties are obtained when the welding speed is set as 24 cm/min.Specifically,the average hardness,tensile strength and elongation values are 463.736 MPa,52.16 MPa and 2.2%,respectively.The tensile specimens predominantly exhibit fracture along the interlayer bonding interface and the interface between the Al matrix and SiC particles,and the damage mode is ductile fracture.展开更多
The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic pr...The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.展开更多
In plants,heteromorphic self-incompatibility(HetSI)is a strategy for avoiding self-pollination and promoting outcrossing,and during this process,numerous protein-protein interaction events occur between the pistil and...In plants,heteromorphic self-incompatibility(HetSI)is a strategy for avoiding self-pollination and promoting outcrossing,and during this process,numerous protein-protein interaction events occur between the pistil and pollen.Previous studies in Primula and Fagopyrum that focused on HetSI systems have provided interesting insights;however,the molecular mechanism underlying HetSI remains largely unknown.In this study,we profiled the proteome of Plumbago auriculata stigmas before and after self-incompatible(SI)and self-compatible(SC)pollination.Comparative analyses were conducted by 4D-DIA(Four-dimensional data independent acquisition),a promising technology that increases the sensitivity and reduces the spectral complexity of proteomic analysis by adding a fourth dimension,ion mobility.The results revealed 33387 peptides and 5311 proteins in all samples.The pathways in which the differentially expressed proteins(DEPs)identified in the P×P(Pin style self-pollinated with pin pollen)vs.PS(Pin style)and T×T(Thrum style self-pollinated with thrum pollen)vs.TS(Thrum style)comparisons were significantly enriched were biosynthesis of secondary metabolites and pentose and glucuronate interconversions.In the P×T(Pin style cross-pollinated with thrum pollen)vs.PS and T×P(Thrum style cross-pollinated with pin pollen)vs.TS comparison,the top three pathways were biosynthesis of secondary metabolites,pentose and glucuronate interconversions,and phenylpropanoid biosynthesis.The phenylpropanoid biosynthesis,cutin,suberine and wax biosynthesis,and flavonoid biosynthesis pathways were enriched in the P×T vs.P×P comparison,and starch and sucrose metabolism,glycerophospholipid metabolism,and alpha-linolenic acid metabolism were abundant in the T×T vs.T×P comparison.The enriched pathways between PS and TS were the biosynthesis of secondary metabolites,phenylpropanoid biosynthesis,and pentose and glucuronate interconversion.Self-incompatibility protein S1(SI S1),Mitogen-activated protein kinase 3/4(MPK3/4),Mitogen-activated protein kinase kinase 2/3(M2K2/3),Exocyst complex component EXO70A1(E70A1)and Thioredoxin H1/2(TRXH1/2)were found to be HetSI-related candidates,and O-fucosyltransferase 23(OFT23),3-ketoacyl-CoA synthase 6(KCS6),Receptor-like protein kinase FERONIA(FERON),Fimbrin-5(FIMB5),Pollen-specific leucine-rich repeat extensin-like protein 4(PLRX4),Transcription initiation factor IIB-2(TF2B2)and Pectinesterase 1(AL11A),etc.,were identified as other regulatory transducers.These findings combined with our morphological and reactive oxygen species(ROS)intensity analyses indicate that P.auriculata has typical dry-stigmas and that the HetSI mechanism might differ between the pin and thrum.SI S1 might be the key factor in HetSI,and ROS are overexpressed during SC pollination to rapidly activate the mitogen-activated protein kinase(MAPK)-mediated phosphorylation of E70A1 to maintain stigma receptivity in plants with HetSI.展开更多
Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported....Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.展开更多
Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents...Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality.展开更多
From the perspective of group standards, the dynamics of the cosmetic industry in the past few years were briefly reviewed and analyzed, including the number of group standards published, types of group standards, gro...From the perspective of group standards, the dynamics of the cosmetic industry in the past few years were briefly reviewed and analyzed, including the number of group standards published, types of group standards, groups, and geographical distribution of the groups. The large number of participating groups and the wide range of geographical distribution indicated that group standards could play a positive role in the sustained and positive development of cosmetic industry. The future development of cosmetic industry was also prospected。展开更多
Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional character...Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional characteri-zation of SRO genes from cotton species have not been reported so far.Results A total of 36 SRO genes were identified from four cotton species.Phylogenetic analysis divided these genes into three groups with distinct structure.Syntenic and chromosomal distribution analysis indicated uneven distribu-tion of GaSRO,GrSRO,GhSRO,and GbSRO genes on A2,D5 genomes,Gh-At,Gh-Dt,Gb-At,and Gb-Dt subgenomes,respectively.Gene duplication analysis revealed the presence of six duplicated gene pairs among GhSRO genes.In promoter analysis,several elements responsive to the growth,development and hormones were found in GhSRO genes,implying gene induction during cotton growth and development.Several miRNAs responsive to plant growth and abiotic stress were predicted to target 12 GhSRO genes.Organ-specific expression profiling demonstrated the roles of GhSRO genes in one or more tissues.In addition,specific expression pattern of some GhSRO genes dur-ing ovule development depicted their involvement in these developmental processes.Conclusion The data presented in this report laid a foundation for understanding the classification and functions of SRO genes in cotton.展开更多
文摘Certification is a conformity assessmenttool confirming that products (including services),processes,systems,and personnel meetthe relevant regulatory requirements.A certificationbody is a conformity assessment body engaged inimplementing audits on whether products (includingservices),processes,systems,and personnel meetthe relevant regulatory requirements.Like othereconomic activities,certification is subject to risks.GB/T 27021-2007 Conformity assessmen-Requirementsfor bodies providing audit and certificationof management systems offers prescriptionsfor the risk control of certification bodies in carryingout certification activities,and requires certificationbodies to identify risks and arrange risk control.This paper analyzes the possible risks in certificationon the basis of understanding the related riskmanagement of the GB/T27021-2007 Standard,and proposes countermeasures for controllingrisks.
文摘China's performance in the global economic crisis has attracted the world's attention. People are looking to China, eager to learn about the management level of Chinese government and enterprises, as well as product quality. In these matters, China draws on the generally adopted worldwide practice in quality evaluation: the certification and accreditation system. This system simultaneously extends the basic national technical platform for external trade. Using the China Quality Mark Certification Group (CQM) as an example,
文摘With the intensifying aging population,rural elderly care services are facing challenges such as uneven medical resources and inadequate facilities.Taking Qinhuangdao City as an example,this paper explores ways to improve rural elderly care services through the construction of a remote medical service network.This paper analyzes the current status of rural elderly care services in Qinhuangdao City,pointing out that issues such as the uneven distribution of medical resources between urban and rural areas,poor accessibility,and low service quality urgently need to be addressed.The necessity of accelerating the construction of a remote medical network is proposed,including reducing medical costs,optimizing resource allocation,and disease prevention.Specific measures cover aspects such as policy support,integration of medical and elderly care services,talent cultivation,and technology promotion.At the same time,the potential challenges and risks faced by the remote medical service network in improving rural elderly care services are evaluated,and corresponding countermeasures and suggestions are proposed.Research shows that remote medical care can effectively improve the quality of rural elderly care services and help achieve proper medical care for the elderly.
基金co-supported by the Natural Science Foundation of Tianjin,China(No.21JCZDJC00860)the Civil Aviation Security Capacity Building Funding Project,China(No.2020[142])。
文摘A compact low-profile dual-band Circularly Polarized(CP)microstrip antenna is proposed for the Bei Dou Navigation Satellite System(BDS).To achieve dual-band functionality,a single-layer multimode design is employed,incorporating F-,L-,and T-shaped slots at the corners for CP performance.Additionally,a Defected Ground Structure(DGS)is implemented to further enhance the antenna's efficiency.A detailed parameter analysis is conducted to optimize the antenna's size and performance balance.After optimization,the final dimensions of the antenna are minimized while still meeting the design requirements.The prototype of the optimized antenna is fabricated and tested,demonstrating coverage of frequency bands from 1.182 GHz to 1.217 GHz and 1.547 GHz to 1.569 GHz.The antenna effectively supports dual-band CP for B1I and B2b frequency bands.A performance metric,the Ratio of relative Bandwidth to Volume(RBV),is introduced to evaluate the antenna's efficiency.Compared to similar designs,the proposed antenna offers a smaller size without sacrificing performance,making it well-suited for BDS airborne applications.
基金Project supported by the National Natural Science Foundation of China(62105235,62205035)the Scientific Research Project of Tianjin Education Commission(2022KJ060)+1 种基金Qinglan Project of Jiangsu Province of ChinaNatural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJD350001)。
文摘Very recently,upconversion luminescence(UCL)lifetime,as a powerful optical dimension,has attracted tremendous research interest due to its advantages of high information capacity and high photophysical stability.With the implementation and emergence of endlessly fascinating UCL features,it is particularly meaningful to understand the photophysical mechanisms inside UCL materials to enable rational subdivision-level structure design,which is however currently far from sufficient.In this work,we take an ordinary upconversion nanoparticle as an example to prove that the UCL decay curves and corresponding lifetimes are indeed a collective response of the entire UCL system to excitations,that exhibits correlated,yet quite different properties from individual ions.A specially developed theoretical random walk model combined with an experimental lifetime control for Yb^(3+)/Er^(3+)UCL demonstrates that ene rgy diffusion principally alters the decay rate.Moreover,the different extent of the influence of energy diffusion on the emissions of ^(2)H_(11/2)/^(4)S_(3/2)(green)and ^(4)F_(9/2)(red)leads to an extremely uncommon crossover comparison of decay rates.This work provides new ideas for understanding decay dynamics and practical UCL lifetime manipulation methods.
基金support of the National Biodiversity Future Center (NBFC) to the University of Padova,the Research Centre for Plant ProtectionCertification (CREA),and the National Research Council (CNR),funded under the National Recovery and Resilience Plan (NRRP)+2 种基金Mission 4 Component 2 Investment 1.4-Call for tender No.3138 of 16 December 2021,rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union–NextGenerationEUProject code CN_00000033,Concession Decree No.1034 of 17 June 2022adopted by the Italian Ministry of University and Research,CUP:C93C22002810006,CUP:B83D21014060006,CUP:B83C22002930006,Project title“National Biodiversity Future CenterNBFC”support by Beaver Trust,grant number:1185451
文摘The Eurasian beaver(Castor fiber Linnaeus,1758)can be considered a hydrological ecosystem engineer as it shapes environmental characteristics through its building activities and feeding behaviour.Even if several studies have so far reported beaver impact on multi-taxon biodiversity and forest regeneration,there is a lack of research on forest stand structure evolution following beaver direct activity on trees.This represents a pivotal topic for predicting restoration outcomes and reccommending sound silvicultural and management practices to maintain specific forest conditions.Specifically,the study aims at investigating forest stand structure and tree species diversity changes considering river variability,distance from the riverbank and beaver's gnawing activity intensity.The Eurasian beaver is only recently recolonising the three analysed Mediterranean rivers,but stand structure seems to be already significantly impacted by the species.The number of trees was reduced,increasing mean diameter at breast height at stand level,as most of the youngest and/or smaller trees are entirely cut down.Strongest structural variations can be detected in intensively impacted stands and in the forest portions closer to the riverbank.The absence of a significant effect on most of the diversity indices is likely due to the initially homogeneous composition of the tree layer in each stand and to the limited variety of beaver's diet within the sites.Future resprouting of secondary tree shoots,as well as beaver gnawing activity changes in intensity over time and space,can further produce variations in structural parameters and woody species diversity in the medium-and long-term period.Therefore,it will be crucial to further monitor the long-term effects,as structural shifts can produce significant effects on riparian ecosystem functions.
基金supported in part by the National Natural Science Foundation of China(Nos.12175100 and 11975132)Construct Program of the Key Discipline in Hunan Province,Research Foundation of Education Bureau of Hunan Province,China(Nos.21B0402,18A237 and 22A0305)+3 种基金Natural Science Foundation of Hunan Province,China(No.2018JJ2321)Innovation Group of Nuclear and Particle Physics in USC,Shandong Province Natural Science Foundation,China(No.ZR2022JQ04)Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFZ10)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20230962).
文摘By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.
文摘Wastewater plays a crucial role in deteriorating water quality and can significantly affect human health and ecosystems if discharged without proper treatment.Among available treatment methods,adsorption is often considered an effective,relatively inexpensive,and environmentally friendly purification technique,but its efficiency depends on the sorbents used.The use of low-cost biosorbents with high adsorption capacity is widely studied.These include various biomaterials such as microalgae,cyanobacteria,fungi,and plant materials.The utilization of different biosorbents derived from plant waste,such as Paulownia wood,aspen,hickory,Ziziphus bark,peach tree shavings,as well as grasses such as red fescue and reed,and Sargassum algae in natural and modified forms,is a crucial research direction.Such studies highlight the potential to address waste issues by repurposing it as biosorbents.Several studies have examined the ability of different biosorbents to treat wastewater and suggested that the physicochemical properties of the material's surface,such as specific surface area,pore size,and pore volume,play a decisive role in adsorption capacity.A quantitative analysis of plant-based biosorbents will significantly aid in developing water treatment systems and achieving optimal adsorption through modifications of their physicochemical properties.Furthermore,the analysis will help understand the relative importance of each physicochemical property in determining adsorption capacity,thereby contributing to the implementation of treatment methods targeting specific pollutants.
基金supported by Wu Jieping Medical Foundation(320.6750.2022-19-40 and 320.6750.2024-18-41)Guangxi University Young and Middle-Aged Teachers Research Basic Ability Improvement Project(2024KY0510)Guangxi Health Commission Self-Funded Research Project(Z-C20231002).
文摘Background:Neoadjuvant chemotherapy(NAC)significantly enhances clinical outcomes in patients with triple-negative breast cancer(TNBC);however,chemoresistance frequently results in treatment failure.Consequently,understanding the mechanisms underlying resistance and accurately predicting this phenomenon are crucial for improving treatment efficacy.Methods:Ultrasound images from 62 patients,taken before and after neoadjuvant therapy,were collected.Mitochondrial-related genes were extracted from a public database.Ultrasound features associated with NAC resistance were identified and correlated with significant mitochondrial-related genes.Subsequently,a prognostic model was developed and evaluated using the GSE58812 dataset.We also assessed this model alongside clinical factors and its ability to predict immunotherapy response.Results:A total of 32 significant differentially expressed genes in TNBC across three groups indicated a strong correlation with ultrasound features.Univariate and multivariate Cox regression analyses identified six genes as independent risk factors for TNBC prognosis.Based on these six mitochondrial-related genes,we constructed a TNBC prognostic model.The model’s risk scores indicated that high-risk patients generally have a poorer prognosis compared to low-risk patients,with the model demonstrating high predictive performance(p=0.002,AUC=0.745).This conclusion was further supported in the test set(p=0.026,AUC=0.718).Additionally,we found that high-risk patients exhibited more advanced tumor characteristics,while low-risk patients were more sensitive to common chemotherapy drugs and immunotherapy.The signature-related genes also predicted immunotherapy response with a high accuracy of 0.765.Conclusion:We identified resistance-related features from ultrasound images and integrated them with genomic data,enabling effective risk stratification of patients and prediction of the efficacy of neoadjuvant chemotherapy and immunotherapy in patients with TNBC.
基金Centre for Advance Studies in Agricultural Food Security and Punjab Agricultural Research Board for providing funds under CAS-PARB project(No.964).
文摘Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars.
基金financially supported by the National Natural Science Foundation of China(No.51372009)。
文摘Superior compound coatings were prepared on CK45 steel surface by vanadium-nitrocarburizing duplex treatment in low-temperature salt bath.In this study,the microhardness,the phase constitution and the compositional distribution in the coatings prepared under different conditions were systematically characterized.The results indicated that the reactions among activated vanadium,carbon and nitrogen atoms occurred on the steel surface,leading to the formation of compound coatings composed of outermost and compound layers.The mechanism for the formation of compound layer as well as the growth kinetics of the layer was also discussed.Upon the duplex treatment,the wear and corrosion resistances of steel surface were significantly improved.It was found that the growth kinetics of compound layer obeyed the parabolic law,with the activation energy of 122.82 kJ·moL^(-1).
基金This research is related to the project GO NEWTON“Agroforestry Network in Tuscany”,financed by the Tuscany Region through the Measure 16.2 of Rural Development Plan 2014-2020 to promote agroforestry systems by spreading knowledge to farmers and promoting innovation in the Tuscan territory.
文摘On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.
基金supported by the Fundamental Research Funds for the Central Universities of CAUC(3122022076)National Natural Science Foundation of China(NSFC)(U2133203).
文摘With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.
基金National Natural Science Foundation of China(52205375)Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(20204BCJ23003)Jiangxi Provincial Natural Science Foundation(20224BAB214010,20232BAB204049,jxsq2019201118)。
文摘SiC particle(SiCp)/Al composite materials were fabricated via powder packed resistance seam welding additive manufacturing.The influence of welding speed on microstructure and mechanical properties of the specimen was investigated,elucidating the formation and fracture mechanism of single-pass multi-layer deposition.The results demonstrate that a dense internal structure of the specimen characterized by uniformly dispersed SiCp embedded within the Al matrix is formed.However,particle agglomeration and porosity defects are observed.The porosity increases with the increase in welding speed,and the microstructure of the RSAM-24 specimen has the highest density,characterized by a density of 2.706 g/cm^(3)and a porosity of 1.672%.The mechanical properties of the specimens decrease as the welding speed increases.Optimal mechanical properties are obtained when the welding speed is set as 24 cm/min.Specifically,the average hardness,tensile strength and elongation values are 463.736 MPa,52.16 MPa and 2.2%,respectively.The tensile specimens predominantly exhibit fracture along the interlayer bonding interface and the interface between the Al matrix and SiC particles,and the damage mode is ductile fracture.
基金supported by the National Natural Science Foundation of China (22278086)
文摘The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.
基金Scientific Research Foundation of Science&Technology Department of Sichuan Province(2021YJ0497).
文摘In plants,heteromorphic self-incompatibility(HetSI)is a strategy for avoiding self-pollination and promoting outcrossing,and during this process,numerous protein-protein interaction events occur between the pistil and pollen.Previous studies in Primula and Fagopyrum that focused on HetSI systems have provided interesting insights;however,the molecular mechanism underlying HetSI remains largely unknown.In this study,we profiled the proteome of Plumbago auriculata stigmas before and after self-incompatible(SI)and self-compatible(SC)pollination.Comparative analyses were conducted by 4D-DIA(Four-dimensional data independent acquisition),a promising technology that increases the sensitivity and reduces the spectral complexity of proteomic analysis by adding a fourth dimension,ion mobility.The results revealed 33387 peptides and 5311 proteins in all samples.The pathways in which the differentially expressed proteins(DEPs)identified in the P×P(Pin style self-pollinated with pin pollen)vs.PS(Pin style)and T×T(Thrum style self-pollinated with thrum pollen)vs.TS(Thrum style)comparisons were significantly enriched were biosynthesis of secondary metabolites and pentose and glucuronate interconversions.In the P×T(Pin style cross-pollinated with thrum pollen)vs.PS and T×P(Thrum style cross-pollinated with pin pollen)vs.TS comparison,the top three pathways were biosynthesis of secondary metabolites,pentose and glucuronate interconversions,and phenylpropanoid biosynthesis.The phenylpropanoid biosynthesis,cutin,suberine and wax biosynthesis,and flavonoid biosynthesis pathways were enriched in the P×T vs.P×P comparison,and starch and sucrose metabolism,glycerophospholipid metabolism,and alpha-linolenic acid metabolism were abundant in the T×T vs.T×P comparison.The enriched pathways between PS and TS were the biosynthesis of secondary metabolites,phenylpropanoid biosynthesis,and pentose and glucuronate interconversion.Self-incompatibility protein S1(SI S1),Mitogen-activated protein kinase 3/4(MPK3/4),Mitogen-activated protein kinase kinase 2/3(M2K2/3),Exocyst complex component EXO70A1(E70A1)and Thioredoxin H1/2(TRXH1/2)were found to be HetSI-related candidates,and O-fucosyltransferase 23(OFT23),3-ketoacyl-CoA synthase 6(KCS6),Receptor-like protein kinase FERONIA(FERON),Fimbrin-5(FIMB5),Pollen-specific leucine-rich repeat extensin-like protein 4(PLRX4),Transcription initiation factor IIB-2(TF2B2)and Pectinesterase 1(AL11A),etc.,were identified as other regulatory transducers.These findings combined with our morphological and reactive oxygen species(ROS)intensity analyses indicate that P.auriculata has typical dry-stigmas and that the HetSI mechanism might differ between the pin and thrum.SI S1 might be the key factor in HetSI,and ROS are overexpressed during SC pollination to rapidly activate the mitogen-activated protein kinase(MAPK)-mediated phosphorylation of E70A1 to maintain stigma receptivity in plants with HetSI.
文摘Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.
基金funded by the National Key R&D Program of China(2022YFB4101702)the National Natural Science Foundation of China(52106072 and 52225003)the Fundamental Research Funds for Central Universities(2019JQ03015)。
文摘Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality.
文摘From the perspective of group standards, the dynamics of the cosmetic industry in the past few years were briefly reviewed and analyzed, including the number of group standards published, types of group standards, groups, and geographical distribution of the groups. The large number of participating groups and the wide range of geographical distribution indicated that group standards could play a positive role in the sustained and positive development of cosmetic industry. The future development of cosmetic industry was also prospected。
文摘Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional characteri-zation of SRO genes from cotton species have not been reported so far.Results A total of 36 SRO genes were identified from four cotton species.Phylogenetic analysis divided these genes into three groups with distinct structure.Syntenic and chromosomal distribution analysis indicated uneven distribu-tion of GaSRO,GrSRO,GhSRO,and GbSRO genes on A2,D5 genomes,Gh-At,Gh-Dt,Gb-At,and Gb-Dt subgenomes,respectively.Gene duplication analysis revealed the presence of six duplicated gene pairs among GhSRO genes.In promoter analysis,several elements responsive to the growth,development and hormones were found in GhSRO genes,implying gene induction during cotton growth and development.Several miRNAs responsive to plant growth and abiotic stress were predicted to target 12 GhSRO genes.Organ-specific expression profiling demonstrated the roles of GhSRO genes in one or more tissues.In addition,specific expression pattern of some GhSRO genes dur-ing ovule development depicted their involvement in these developmental processes.Conclusion The data presented in this report laid a foundation for understanding the classification and functions of SRO genes in cotton.