期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
贝叶斯因子及其在JASP中的实现 被引量:54
1
作者 胡传鹏 孔祥祯 +2 位作者 Eric-Jan Wagenmakers Alexander Ly 彭凯平 《心理科学进展》 CSSCI CSCD 北大核心 2018年第6期951-965,共15页
统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test,NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或... 统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test,NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或)补充的统计方法。贝叶斯因子是贝叶斯统计中用来进行模型比较和假设检验的重要方法,其可以解读为对零假设H_0或者备择假设H_1的支持程度。其与NHST相比有如下优势:同时考虑H_0和H_1并可以用来支持H_0、不"严重"地倾向于反对H_0、可以监控证据强度的变化以及不受抽样计划的影响。目前,贝叶斯因子能够很便捷地通过开放的统计软件JASP实现,本文以贝叶斯t检验进行示范。贝叶斯因子的使用对心理学研究者来说具有重要的意义,但使用时需要注意先验分布选择的合理性以及保持数据分析过程的透明与公开。 展开更多
关键词 贝叶斯因子 贝叶斯学派 频率学派 假设检验 JASP
在线阅读 下载PDF
贝叶斯方差分析在JASP中的实现 被引量:6
2
作者 王允宏 Don van den Bergh +3 位作者 Frederik Aust Alexander Ly Eric-Jan Wagenmakers 胡传鹏 《心理技术与应用》 2023年第9期528-541,共14页
贝叶斯统计应用于假设检验的方法——贝叶斯因子——在心理学研究中的应用日渐增加。贝叶斯因子能分别量化所支持的相应假设或模型的证据,进而根据其数值大小做出当前数据更支持哪种假设或模型的判断。然而,国内尚缺乏对方差分析的贝叶... 贝叶斯统计应用于假设检验的方法——贝叶斯因子——在心理学研究中的应用日渐增加。贝叶斯因子能分别量化所支持的相应假设或模型的证据,进而根据其数值大小做出当前数据更支持哪种假设或模型的判断。然而,国内尚缺乏对方差分析的贝叶斯因子的原理与应用的介绍。基于此,本文首先介绍贝叶斯方差分析的基本思路及计算原理,并结合实例数据,展示如何在JASP中对五种常用的心理学实验设计(单因素组间设计、单因素组内设计、二因素组间设计、二因素组内设计和二因素混合设计)进行贝叶斯方差分析及如何汇报和解读结果。贝叶斯方差分析提供了一个能有效替代传统方差分析的方案,是研究者进行统计推断的有力工具。 展开更多
关键词 贝叶斯统计 贝叶斯因子 方差分析 JASP
在线阅读 下载PDF
An Investigation of Optimal Machine Learning Methods for the Prediction of ROTI 被引量:9
3
作者 Fulong XU Zishen LI +4 位作者 Kefei ZHANG Ningbo WANG Suqin WU Andong HU Lucas Holden 《Journal of Geodesy and Geoinformation Science》 2020年第2期1-15,共15页
The rate of the total electron content(TEC)change index(ROTI)can be regarded as an effective indicator of the level of ionospheric scintillation,in particular in low and high latitude regions.An accurate prediction of... The rate of the total electron content(TEC)change index(ROTI)can be regarded as an effective indicator of the level of ionospheric scintillation,in particular in low and high latitude regions.An accurate prediction of the ROTI is essential to reduce the impact of the ionospheric scintillation on earth observation systems,such as the global navigation satellite systems.However,it is difficult to predict the ROTI with high accuracy because of the complexity of the ionosphere.In this study,advanced machine learning methods have been investigated for ROTI prediction over a station at high-latitude in Canada.These methods are used to predict the ROTI in the next 5 minutes using the data derived from the past 15 minutes at the same location.Experimental results show that the method of the bidirectional gated recurrent unit network(BGRU)outperforms the other six approaches tested in the research.It is also confirmed that the RMSEs of the predicted ROTI using the BGRU method in all four seasons of 2017 are less than 0.05 TECU/min.It is demonstrated that the BGRU method exhibits a high level of robustness in dealing with abrupt solar activities. 展开更多
关键词 machine learning ROTI prediction ionospheric scintillation high-latitude region
在线阅读 下载PDF
Global ranking of the sensitivity of interaction potential contributions within classical molecular dynamics force fields
4
作者 Wouter Edeling Maxime Vassaux +3 位作者 Yiming Yang Shunzhou Wan Serge Guillas Peter V.Coveney 《npj Computational Materials》 CSCD 2024年第1期2347-2359,共13页
Uncertainty quantification(UQ)is rapidly becoming a sine qua non for all forms of computational science out of which actionable outcomes are anticipated.Much of the microscopic world of atoms and molecules has remaine... Uncertainty quantification(UQ)is rapidly becoming a sine qua non for all forms of computational science out of which actionable outcomes are anticipated.Much of the microscopic world of atoms and molecules has remained immune to these developments but due to the fundamental problems of reproducibility and reliability,it is essential that practitioners pay attention to the issues concerned.Here aUQstudy is undertaken of classical molecular dynamics with a particular focus on uncertainties in the high-dimensional force-field parameters,which affect key quantities of interest,including material properties and binding free energy predictions in drug discovery and personalized medicine.Using scalable UQ methods based on active subspaces that invoke machine learning and Gaussian processes,the sensitivity of the input parameters is ranked.Our analyses reveal that the prediction uncertainty is dominated by a small number of the hundreds of interaction potential parameters within the force fields employed.This ranking highlights what forms of interaction control the prediction uncertainty and enables systematic improvements to be made in future optimizations of such parameters. 展开更多
关键词 INTERACTION DYNAMICS POTENTIAL
原文传递
Bayesian Model Calibration with Interpolating Polynomials based on Adaptively Weighted Leja Node
5
作者 Laurent van den Bos Benjamin Sanderse +1 位作者 Wim Bierbooms Gerard van Bussel 《Communications in Computational Physics》 SCIE 2020年第1期33-69,共37页
An efficient algorithm is proposed for Bayesian model calibration,which is commonly used to estimate the model parameters of non-linear,computationally expensive models using measurement data.The approach is based on ... An efficient algorithm is proposed for Bayesian model calibration,which is commonly used to estimate the model parameters of non-linear,computationally expensive models using measurement data.The approach is based on Bayesian statistics:using a prior distribution and a likelihood,the posterior distribution is obtained through application of Bayes’law.Our novel algorithm to accurately determine this posterior requires significantly fewer discrete model evaluations than traditional Monte Carlo methods.The key idea is to replace the expensive model by an interpolating surrogate model and to construct the interpolating nodal set maximizing the accuracy of the posterior.To determine such a nodal set an extension to weighted Leja nodes is introduced,based on a new weighting function.We prove that the convergence of the posterior has the same rate as the convergence of the model.If the convergence of the posterior is measured in the Kullback–Leibler divergence,the rate doubles.The algorithm and its theoretical properties are verified in three different test cases:analytical cases that confirm the correctness of the theoretical findings,Burgers’equation to show its applicability in implicit problems,and finally the calibration of the closure parameters of a turbulence model to show the effectiveness for computa-tionally expensive problems. 展开更多
关键词 Bayesian model calibration INTERPOLATION Leja nodes surrogate modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部