期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Photoassisted fenton oxidation of refractory organics in UASB-pretreated leachate 被引量:8
1
作者 LauIWC WangP 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期388-392,共5页
Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate... Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon). 展开更多
关键词 BIODEGRADABILITY FENTON landfill leachate photochemical oxidation UASB
在线阅读 下载PDF
Degradation of phenol in an upflow anaerobic sludge blanket(UASB) reactor at ambient temperature 被引量:3
2
作者 KEShui-zhou SHIZhou +1 位作者 ZHANGTong HerbertH.P.FANG 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期525-528,共4页
A synthetic wastewater containing phenol as sole substrate was treated in a 2 8 L upflow anaerobic sludge blanket(UASB) reactor at ambient temperature. The operation conditions and phenol removal efficiency were disc... A synthetic wastewater containing phenol as sole substrate was treated in a 2 8 L upflow anaerobic sludge blanket(UASB) reactor at ambient temperature. The operation conditions and phenol removal efficiency were discussed, microbial population in the UASB sludge was identified based on DNA cloning, and pathway of anaerobic phenol degradation was proposed. Phenol in wastewater was degraded in an UASB reactor at loading rate up to 18 gCOD/(L·d), with a 1:1 recycle ratio, at 26±1℃, pH 7 0—7 5. An UASB reactor was able to remove 99% of phenol up to 1226 mg/L in wastewater with 24 h of hydraulic retention time(HRT). For HRT below 24 h, phenol degradation efficiency decreased with HRT, from 95 4% at 16 h to 93 8% at 12 h. It further deteriorated to 88 5% when HRT reached 8 h. When the concentration of influent phenol of the reactor was 1260 mg/L(corresponding COD 3000 mg/L), with the HRT decreasing(from 40 h to 4 h, corresponding COD loading increasing), the biomass yields tended to increase from 0 265 to 3 08 g/(L·d). While at 12 h of HRT, the biomass yield was lower. When HRT was 12 h, the methane yield was 0 308 L/(gCOD removed), which was the highest. Throughout the study, phenol was the sole organic substrate. The effluent contained only residual phenol without any detectable intermediates, such as benzoate, 4 hydrobenzoate or volatile fatty acids(VFAs). Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H 2/CO 2. Methanogens lastly converted acetate and H 2/CO 2 to methane. The role of epsilon Proteobacteria was, however, unsure. 展开更多
关键词 ambient temperature anaerobic degradation PHENOL UASB DNA WASTEWATER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部