Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmissio...Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmission of COVID-19.The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places.Therefore,it is very difficult to manually monitor people in overcrowded areas.This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places,by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19.This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked.The proposed framework is built by fine-tuning the state-of-the-art deep learning model,Faster-RCNN,and has been validated on a publicly available dataset named Face Mask Dataset(FMD)and achieving the highest average precision(AP)of 81%and highest average Recall(AR)of 84%.This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces.Moreover,this work applies to real-time and can be implemented in any public service area.展开更多
The purpose of this study is to enhance the algorithms towards the development of an efficient three dimensional face recognition system in the presence of expressions. The overall aim is to analyse patterns of expres...The purpose of this study is to enhance the algorithms towards the development of an efficient three dimensional face recognition system in the presence of expressions. The overall aim is to analyse patterns of expressions based on techniques relating to feature distances compare to the benchmarks. To investigate how the use of distances can help the recognition process, a feature set of diagonal distance patterns, were determined and extracted to distinguish face models. The significant finding is that, to solve the problem arising from data with facial expressions, the feature sets of the expression-invariant and expression-variant regions were determined and described by geodesic distances and Euclidean distances. By using regression models, the correlations between expressions and neutral feature sets were identified. The results of the study have indicated that our proposed analysis methods of facial expressions, was capable of undertaking face recognition using a minimum set of features improving efficiency and computation.展开更多
基金This work was supported King Abdulaziz University under grant number IFPHI-033-611-2020.
文摘Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmission of COVID-19.The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places.Therefore,it is very difficult to manually monitor people in overcrowded areas.This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places,by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19.This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked.The proposed framework is built by fine-tuning the state-of-the-art deep learning model,Faster-RCNN,and has been validated on a publicly available dataset named Face Mask Dataset(FMD)and achieving the highest average precision(AP)of 81%and highest average Recall(AR)of 84%.This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces.Moreover,this work applies to real-time and can be implemented in any public service area.
文摘The purpose of this study is to enhance the algorithms towards the development of an efficient three dimensional face recognition system in the presence of expressions. The overall aim is to analyse patterns of expressions based on techniques relating to feature distances compare to the benchmarks. To investigate how the use of distances can help the recognition process, a feature set of diagonal distance patterns, were determined and extracted to distinguish face models. The significant finding is that, to solve the problem arising from data with facial expressions, the feature sets of the expression-invariant and expression-variant regions were determined and described by geodesic distances and Euclidean distances. By using regression models, the correlations between expressions and neutral feature sets were identified. The results of the study have indicated that our proposed analysis methods of facial expressions, was capable of undertaking face recognition using a minimum set of features improving efficiency and computation.