Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this artic...Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we use non-Abelian Berry phase to anaJyze the statistics of this membrane wave function. Our results show that the membrane wave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensiona space than 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.展开更多
The kaon electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson equation in rainbow approximation and Bethe-Salpeter equation in ladder approximation with the modified fiat-bottom potent...The kaon electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson equation in rainbow approximation and Bethe-Salpeter equation in ladder approximation with the modified fiat-bottom potential,which is the combination of the flat-bottom potential with considerations for the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All our numerical results give good fit to experimental values and other theoretical results.展开更多
Let {Si}li=1 be an iterated function system (IFS) on Rd with attractor K. Let π be the canonical projection. In this paper, we define a new concept called "projection pressure" Pπ(φ) for φ ∈(Rd) under cer...Let {Si}li=1 be an iterated function system (IFS) on Rd with attractor K. Let π be the canonical projection. In this paper, we define a new concept called "projection pressure" Pπ(φ) for φ ∈(Rd) under certain arlene IFS, and show the variational principle about the projection pressure. Furthermore, we check that the unique zero root of "projection pressure" still satisfies Bowen's equation when each Si is the similar map with the same compression ratio. Using the root of Bowen's equation, we can get the Hausdorff dimension of the attractor K.展开更多
文摘Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we use non-Abelian Berry phase to anaJyze the statistics of this membrane wave function. Our results show that the membrane wave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensiona space than 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.
文摘The kaon electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson equation in rainbow approximation and Bethe-Salpeter equation in ladder approximation with the modified fiat-bottom potential,which is the combination of the flat-bottom potential with considerations for the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All our numerical results give good fit to experimental values and other theoretical results.
基金supported by National Natural Science Foundation of China (Grant No.10971100)National Basic Research Program of China (973 Program) (Grant No. 2007CB814800)
文摘Let {Si}li=1 be an iterated function system (IFS) on Rd with attractor K. Let π be the canonical projection. In this paper, we define a new concept called "projection pressure" Pπ(φ) for φ ∈(Rd) under certain arlene IFS, and show the variational principle about the projection pressure. Furthermore, we check that the unique zero root of "projection pressure" still satisfies Bowen's equation when each Si is the similar map with the same compression ratio. Using the root of Bowen's equation, we can get the Hausdorff dimension of the attractor K.