Ultrabright femtosecond X-ray pulses generated by X-ray free-electron lasers(XFELs)enable the high-resolution determination of nanoparticle structures without crystallization or freezing.As each particle that interact...Ultrabright femtosecond X-ray pulses generated by X-ray free-electron lasers(XFELs)enable the high-resolution determination of nanoparticle structures without crystallization or freezing.As each particle that interacts with the pulse is destroyed,an aerodynamic lens(ADL)is used to update the particles by focusing them into a narrow beam in real time.Current single-particle imaging(SPI)experiments are limited by an insufficient number of diffraction patterns;therefore,optimized ADLs are required to improve the hit rate and signal-to-noise ratio,particularly for small particles.Herein,an efficient and simple method for designing ADLs and a new ADL specifically designed for SPI using this method are presented.A new method is proposed based on the functional relationship between a key parameter and its influencing parameters in the ADL,which is established through theoretical analysis and numerical simulations.A detailed design process for the new ADL is also introduced.Both simulations and experiments are performed to characterize the behavior of the particles in the ADL.The results show that particles with diameters ranging from 30 to 500 nm can be effectively focused into a narrow beam.In particular,particles smaller than 100 nm exhibit better performance at lower flow rates than the injector currently used in SPI.The new ADL increases the beam density and reduces the gas background noise.This new method facilitates the design of ADLs for SPI and has potential applications in other fields that utilize focused aerosol beams.展开更多
The prototype material,Li_(1.23)Ru_(0.41)Ni_(0.36)O_(2),is proposed to gain the deep and comprehensive understanding of chemical and structural changes of the novel layered/rocksalt intergrown cathodes.Synchrotronbase...The prototype material,Li_(1.23)Ru_(0.41)Ni_(0.36)O_(2),is proposed to gain the deep and comprehensive understanding of chemical and structural changes of the novel layered/rocksalt intergrown cathodes.Synchrotronbased X-ray absorption spectra and resonant inelastic X-ray scattering reveal that both cationic and anionic redox evolves in the charge compensation process of the intergrown material,while synchrotronbased extended X-ray fine structure spectra and in situ X-ray diffraction measurements demonstrates that the intergrown material undergoes minimal local-and long-range structural variations at deep de/lithiation.This work highlights the great potential of the intergrown structure to inspire the design of advanced cathode materials for lithium-ion batteries.展开更多
Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received wides...Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.展开更多
The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered c...The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered cathodes consisting cationic and anionic reactions as the most typical representative of high-capacity cathodes have shown its tremendous potential.However,there is a long way to go before commercialization because of unsatisfactory performances including large voltage hysteresis,voltage fade and poor cycle performance.Numerous investigations on redox mechanisms and engineering strategies have been performed from the point view of structure and made significant progress,which has been well reviewed.Meanwhile,the unacceptable issues are essentially correlated to the electronic configuration of anionic redox and its interaction with adjacent transition metal cations,which can be well depicted from electronic structure.However,the investigations on anionic reaction process in the viewpoint of electronic structure have been much less summarized.This review aims to compile the current knowledge of anionic redox from the point view of electronic structure,including configuration,origination,evolution,detection and coupling relationship with cationic redox.This work is attempted to inspire new perspectives and design approaches for the development of high-capacity cathodes.展开更多
We propose a method to characterize the features of a cold strontium cloud in a magneto-optical trap(MOT)through the photoionization of cold Sr atoms in a custom-designed reaction microscope.Sr atoms in the dark state...We propose a method to characterize the features of a cold strontium cloud in a magneto-optical trap(MOT)through the photoionization of cold Sr atoms in a custom-designed reaction microscope.Sr atoms in the dark state of 5s5p3P2 populated via the cascade transition 5s5p^(1)P_(1)→5s4d^(1)D_(2)→5s5p^(3)P_(2)accumulate a significant fraction,giving a long lifetime of 520 s.These atoms in the dark state are subsequently trapped by the gradient magnetic field of the MOT.By scanning the Sr+momentum distributions ionized with an 800 nm infrared femtosecond laser,we are able to outline the size of~0.55 mm in radius and the temperature of~0.40 mK for the dark-state atoms,which is significantly cooler than the MOT temperature of 3.3 mK trapped in the 461 nm.The size of MOT exhibits an oblate spheroidal distribution with a radius of approximately 0.35 mm and 0.55 mm,extracted with momenta of photoion and absorption imaging,respectively.The results using the photoion momenta are consistent with the expected results from absorption imaging,which confirms the method's reliability.The advantage of this method is the ability to simultaneously characterize the distribution information of atoms in different initial states within the cold atomic cloud.展开更多
The dual quantum spin Hall insulator(QSHI)is a newly discovered topological state in the two-dimensional(2D)material TaIrTe_(4),which exhibits both a traditional Z_(2)band gap at the charge neutrality point and a Van ...The dual quantum spin Hall insulator(QSHI)is a newly discovered topological state in the two-dimensional(2D)material TaIrTe_(4),which exhibits both a traditional Z_(2)band gap at the charge neutrality point and a Van Hove singularity(VHS)that induces a correlated Z_(2)band gap with weak doping.Inspired by the recent progress in theoretical understanding and experimental measurements,a promising dual QSHI is predicted in the counterpart material of the NbIrTe_(4)monolayer by first-principles calculations.In addition to the well-known band inversion at the charge neutrality point,two new band inversions are found after a charge density wave(CDW)phase transition when the chemical potential is near the VHS:one direct and one indirect Z_(2)band gap.The VHSinduced non-trivial band gap is approximately 10 meV,significantly larger than that of TaIrTe_(4).Furthermore,as the newly generated band gap is mainly dominated by the 4d orbitals of Nb,the electronic correlation effects should be stronger for NbIrTe_(4)than for TaIrTe_(4).Therefore,the dual QSHI state in the NbIrTe_(4)monolayer is expected to provide a strong platform for investigating the interplay between topologies and correlation effects.展开更多
In the exploration of celestial bodies,such as Mars,the Moon,and asteroids,X-ray fluorescence analysis has emerged as a critical tool for elemental analysis.However,the varying selection rules and excitation sources i...In the exploration of celestial bodies,such as Mars,the Moon,and asteroids,X-ray fluorescence analysis has emerged as a critical tool for elemental analysis.However,the varying selection rules and excitation sources introduce complexity.Specifically,these discrepancies can cause variations in the intensities of the characteristic spectral lines emitted by identical elements.These variations,compounded by the minimal energy spacing between these spectral lines,pose substantial challenges for conventional silicon drift detectors(SDD),hindering their ability to accurately differentiate these lines and provide detailed insights into the material structure.To overcome this challenge,a cryogenic X-ray spectrometer based on transition-edge sensor(TES)detector arrays is required to achieve precise measurements.This study measured and analyzed the K-edge characteristic lines of copper and the diverse L-edge characteristic lines of tungsten using a comparative analysis of the electron and X-ray excitation processes.For the electron excitation experiments,copper and tungsten targets were employed as X-ray sources,as they emit distinctive X-ray spectra upon electron-beam bombardment.In the photon excitation experiments,a molybdenum target was used to produce a continuous spectrum with the prominent Mo Kαlines to emit pure copper and tungsten samples.TES detectors were used for the comparative spectroscopic analysis.The initial comparison revealed no substantial differences in the Kαand Kβlines of copper across different excitation sources.Similarly,the Lαlines of tungsten exhibited uniformity under different excitation sources.However,this investigation revealed pronounced differences within the Lβline series.The study found that XRF spectra preferentially excite outer-shell electrons,in contrast to intrinsic spectra,owing to different photon and electron interaction mechanisms.Photon interactions are selection-ruledependent and involve a single electron,whereas electron interactions can involve multiple electrons without such limitations.This leads to varied excitation transitions,as evidenced in the observed Lβline series.展开更多
Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,...Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,energy,materials,quantum,and microelectronics.Surface science mainly investigates the correspondence between surface property and functionality.Scanning probe microscopy(SPM)techniques are important tools to characterize surface properties because of the capability of atomic-scale imaging,spectroscopy and manipulation at the single-atom level.In this review,we summarize recent advances in surface electronic,magnetic and optical properties characterized mainly by SPM-based methods.We focus on elucidating theπ-magnetism in graphene-based nanostructures,construction of spin qubits on surfaces,topology properties of surface organic structures,STM-based light emission,tip-enhanced Raman spectroscopy and integration of machine learning in SPM studies.展开更多
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
An in-depth understanding of the structure-activity relationship between the surface structure,chemical composition,adsorption and desorption of molecules,and their reaction activity and selectivity is necessary for t...An in-depth understanding of the structure-activity relationship between the surface structure,chemical composition,adsorption and desorption of molecules,and their reaction activity and selectivity is necessary for the rational design of high-performance catalysts.Herein,we present a method for studying catalytic mechanisms using a combination of in situ reaction cells and surface science techniques.The proposed system consists of four parts:preparation chamber,temperatureprogrammed desorption(TPD)chamber,quick load-lock chamber,and in situ reaction cell.The preparation chamber was equipped with setups based on the surface science techniques used for standard sample preparation and characterization,including an Ar+sputter gun,Auger electron spectrometer,and a low-energy electron diffractometer.After a well-defined model catalyst was prepared,the sample was transferred to a TPD chamber to investigate the adsorption and desorption of the probe molecule,or to the reaction cell,to measure the catalytic activity.A thermal desorption experiment for methanol on a clean Cu(111)surface was conducted to demonstrate the functionality of the preparation and TPD chambers.Moreover,the repeatability of the in situ reaction cell experiment was verified by CO_(2) hydrogenation on the Ni(110)surface.At a reaction pressure of 800 Torr at 673 K,turnover frequencies for the methanation reaction and reverse water-gas shift reaction were 0.15 and 7.55 Ni atom^(-1) s^(-1),respectively.展开更多
We report on experimental measurements of the transition dipole moments(TDMs)between the intermediate state 5s5p^(3)P_(1)and the triplet Rydberg series 5sns^(3)S_(1)in an ultracold strontium gas.Here n is the principa...We report on experimental measurements of the transition dipole moments(TDMs)between the intermediate state 5s5p^(3)P_(1)and the triplet Rydberg series 5sns^(3)S_(1)in an ultracold strontium gas.Here n is the principal quantum number ranging from 19 to 40.The transition 5s5p^(3)P_(1)–5sns^(3)S_(1)is coupled via an ultraviolet(UV)beam,inducing Autler–Townes splitting of both states.Such a splitting of the intermediate state is spectroscopically measured by using absorption imaging on a narrow transition 5s^(21)S_(0)–5s5p^(3)P_(1)in an ultracold gas of strontium atoms.The power and size of the UV beam are carefully determined,with which the TDMs are extracted from the measured Autler–Townes splitting.The experimentally obtained TDMs are compared to the calculations based on a parametric core potential,on a Coulomb potential with quantum defect,and on the open-source library Alkali Ryderg calculator,finding good agreement with the former two models and significant deviation with the latter.展开更多
X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetrat...X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.展开更多
Fewest-switches surfacing hopping(FSSH) simulations have been performed with the high-level multi-reference electronic structure method to explore the coupled electronic and nuclear dynamics upon photoexcitation of cy...Fewest-switches surfacing hopping(FSSH) simulations have been performed with the high-level multi-reference electronic structure method to explore the coupled electronic and nuclear dynamics upon photoexcitation of cyanogen bromide(BrCN). The potential energy surfaces(PES) of BrCN are charted as functions of the Jacobi coordinates(R, θ). An indepth examination of the FSSH trajectories reveals the temporal dynamics of the molecule and the population changes of the lowest twelve states during BrCN's photodissociation process, which presents a rich tapestry of dynamical information.Furthermore, the carbon K-edge x-ray absorption spectroscopy(XAS) is calculated with multi-reference inner-shell spectral simulations. The rotation of the CN fragment and the elongation of the C–Br bond are found to be the reason for the peak shifting in the XAS. Our findings offer a nuanced interpretation for inner-shell probe investigations of BrCN, setting the stage for a deeper understanding of the photodissociation process of cyanogen halides molecules.展开更多
The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effe...The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.展开更多
With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within...With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within the linear excitation range reveals that electron-phonon coupling and dissipation of photon energy into the bulk of the crystal take tens of picoseconds.On the other hand,the observed spin dynamics indicate a longer time of about 120 ps.To further understand how the lattice degree of freedom is coupled with these dynamics may require the integration of an ultrafast diffraction probe.展开更多
Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in ...Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.展开更多
Surface chemistry focuses on the investigation of the adsorption,migration,assembly,activation,reaction,and desorption of atoms and molecules at surfaces.Surface chemistry plays the pivotal roles in both fundamental s...Surface chemistry focuses on the investigation of the adsorption,migration,assembly,activation,reaction,and desorption of atoms and molecules at surfaces.Surface chemistry plays the pivotal roles in both fundamental science and applied technology.This review will summarize the recent progresses on surface assembly,synthesis and catalysis investigated mainly by scanning tunneling microscopy and atomic force microscopy.Surface assemblies of water and small biomolecules,construction of Sierpin′ski triangles and surface chirality are summarized.On-surface synthesis of conjugated carbo-and heterocycles and other kinds of carbon nanostructures are surveyed.Surface model catalysis,including single-atom catalysis and electrochemical catalysis,are discussed at the single-atom level.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
A transition edge sensor(TES)is extremely sensitive to changes in temperature,and combined with a high-Z metal of a certain thickness,it can realize high-energy resolution measurements of particles such as X-rays.X-ra...A transition edge sensor(TES)is extremely sensitive to changes in temperature,and combined with a high-Z metal of a certain thickness,it can realize high-energy resolution measurements of particles such as X-rays.X-rays with energies below 10 keV have a weak penetrating ability,hence,only gold or bismuth of a few micrometers in thickness can guarantee a quantum efficiency higher than 70%.Therefore,the entire structure of the TES X-ray detector in this energy range can be realized using a microfabrication process.However,for X-rays or γ-rays from 10 keV to 200 keV,submillimeter absorber layers are required,which cannot be realized using the microfabrication process.This paper first briefly introduces a set of TES X-ray detectors and their auxiliary systems,and then focuses on the introduction of the TES γ-ray detector with an absorber based on a submillimeter lead-tin alloy sphere.The detector achieved a quantum efficiency above 70% near 100 keV and an energy resolution of approximately 161.5 eV at 59.5 keV.展开更多
Based on the first-principles method,we predict two new stable BN allotropes:C12-BN and O16-BN,which belong to cubic and orthorhombic crystal systems,respectively.It is confirmed that both the phases are thermally and...Based on the first-principles method,we predict two new stable BN allotropes:C12-BN and O16-BN,which belong to cubic and orthorhombic crystal systems,respectively.It is confirmed that both the phases are thermally and dynamically stable.The results of molecular dynamics simulations suggest that both the BN phases are highly stable even at high temperatures of 1000 K.In the case of mechanical properties,C12-BN has a bulk modulus of 359 GPa and a hardness of 43.4 GPa,making it a novel superhard material with potential technological and industrial applications.Electronic band calculations reveal that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 e V and 3.54 e V,respectively.The XRD spectra of C12-BN and O16-BN are also simulated to provide more information for possible experimental observation.Our findings enrich the BN allotrope family and are expected to stimulate further experimental interest.展开更多
基金supported by the Major State Basic Research Development Program of China(No.2022YFA1603703)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)+1 种基金National Natural Science Foundation of China(No.12335020)Shanghai Soft X-ray Free Electron Laser Facility beamline project.
文摘Ultrabright femtosecond X-ray pulses generated by X-ray free-electron lasers(XFELs)enable the high-resolution determination of nanoparticle structures without crystallization or freezing.As each particle that interacts with the pulse is destroyed,an aerodynamic lens(ADL)is used to update the particles by focusing them into a narrow beam in real time.Current single-particle imaging(SPI)experiments are limited by an insufficient number of diffraction patterns;therefore,optimized ADLs are required to improve the hit rate and signal-to-noise ratio,particularly for small particles.Herein,an efficient and simple method for designing ADLs and a new ADL specifically designed for SPI using this method are presented.A new method is proposed based on the functional relationship between a key parameter and its influencing parameters in the ADL,which is established through theoretical analysis and numerical simulations.A detailed design process for the new ADL is also introduced.Both simulations and experiments are performed to characterize the behavior of the particles in the ADL.The results show that particles with diameters ranging from 30 to 500 nm can be effectively focused into a narrow beam.In particular,particles smaller than 100 nm exhibit better performance at lower flow rates than the injector currently used in SPI.The new ADL increases the beam density and reduces the gas background noise.This new method facilitates the design of ADLs for SPI and has potential applications in other fields that utilize focused aerosol beams.
基金sponsored by National Natural Science Foundation of China(No.22109010)National Key R&D Program of China(No.2021YFC2902905)+4 种基金Beijing Nova Program,Chongqing Outstanding Youth Fund(No.2022NSCQ-JQX3895)Chongqing Talents Plan for Young Talents(No.CQYC202005032)The Key Project of Chongqing Technology Innovation and Application Development(No.2022TIAD-DEX0024)the support from Beijing Institute of Technology Research Fund Program for Young Scholarsthe support by the Shanghai Sailing Program(No.2023×0308–103–01)。
文摘The prototype material,Li_(1.23)Ru_(0.41)Ni_(0.36)O_(2),is proposed to gain the deep and comprehensive understanding of chemical and structural changes of the novel layered/rocksalt intergrown cathodes.Synchrotronbased X-ray absorption spectra and resonant inelastic X-ray scattering reveal that both cationic and anionic redox evolves in the charge compensation process of the intergrown material,while synchrotronbased extended X-ray fine structure spectra and in situ X-ray diffraction measurements demonstrates that the intergrown material undergoes minimal local-and long-range structural variations at deep de/lithiation.This work highlights the great potential of the intergrown structure to inspire the design of advanced cathode materials for lithium-ion batteries.
基金supported by the National Key Basic Research Program of China (2022YFA1402904)Basic Research Project of Shanghai Science and Technology Innovation Action (grant number 24CL2900900)the National Natural Science Foundation of China (grant number 61904034)
文摘Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0405601)the National Natural Science Foundation of China(No.52130202)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(No.2022yjrc105)。
文摘The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered cathodes consisting cationic and anionic reactions as the most typical representative of high-capacity cathodes have shown its tremendous potential.However,there is a long way to go before commercialization because of unsatisfactory performances including large voltage hysteresis,voltage fade and poor cycle performance.Numerous investigations on redox mechanisms and engineering strategies have been performed from the point view of structure and made significant progress,which has been well reviewed.Meanwhile,the unacceptable issues are essentially correlated to the electronic configuration of anionic redox and its interaction with adjacent transition metal cations,which can be well depicted from electronic structure.However,the investigations on anionic reaction process in the viewpoint of electronic structure have been much less summarized.This review aims to compile the current knowledge of anionic redox from the point view of electronic structure,including configuration,origination,evolution,detection and coupling relationship with cationic redox.This work is attempted to inspire new perspectives and design approaches for the development of high-capacity cathodes.
基金Project supported by the Natural Science Foundation of Henan(Grant No.252300421304)the National Natural Science Foundation of China(Grant Nos.12204498,12474259+1 种基金12334011)the National Key Research and Development Program of China(Grant No.2022YFA1604302)。
文摘We propose a method to characterize the features of a cold strontium cloud in a magneto-optical trap(MOT)through the photoionization of cold Sr atoms in a custom-designed reaction microscope.Sr atoms in the dark state of 5s5p3P2 populated via the cascade transition 5s5p^(1)P_(1)→5s4d^(1)D_(2)→5s5p^(3)P_(2)accumulate a significant fraction,giving a long lifetime of 520 s.These atoms in the dark state are subsequently trapped by the gradient magnetic field of the MOT.By scanning the Sr+momentum distributions ionized with an 800 nm infrared femtosecond laser,we are able to outline the size of~0.55 mm in radius and the temperature of~0.40 mK for the dark-state atoms,which is significantly cooler than the MOT temperature of 3.3 mK trapped in the 461 nm.The size of MOT exhibits an oblate spheroidal distribution with a radius of approximately 0.35 mm and 0.55 mm,extracted with momenta of photoion and absorption imaging,respectively.The results using the photoion momenta are consistent with the expected results from absorption imaging,which confirms the method's reliability.The advantage of this method is the ability to simultaneously characterize the distribution information of atoms in different initial states within the cold atomic cloud.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501503)the National Natural Science Foundation of China(Grant Nos.52271016 and 52188101)the Foundation of Liaoning Province(Grant No.XLYC2203080)。
文摘The dual quantum spin Hall insulator(QSHI)is a newly discovered topological state in the two-dimensional(2D)material TaIrTe_(4),which exhibits both a traditional Z_(2)band gap at the charge neutrality point and a Van Hove singularity(VHS)that induces a correlated Z_(2)band gap with weak doping.Inspired by the recent progress in theoretical understanding and experimental measurements,a promising dual QSHI is predicted in the counterpart material of the NbIrTe_(4)monolayer by first-principles calculations.In addition to the well-known band inversion at the charge neutrality point,two new band inversions are found after a charge density wave(CDW)phase transition when the chemical potential is near the VHS:one direct and one indirect Z_(2)band gap.The VHSinduced non-trivial band gap is approximately 10 meV,significantly larger than that of TaIrTe_(4).Furthermore,as the newly generated band gap is mainly dominated by the 4d orbitals of Nb,the electronic correlation effects should be stronger for NbIrTe_(4)than for TaIrTe_(4).Therefore,the dual QSHI state in the NbIrTe_(4)monolayer is expected to provide a strong platform for investigating the interplay between topologies and correlation effects.
基金supported by the National Key R&D Program of China(No.2022YFF0608303)the National Major Scientific Research Instrument Development Project(No.11927805)+4 种基金the NSFC Young Scientists Fund(No.12005134)the Shanghai-XFEL Beamline Project(SBP)(No.31011505505885920161A2101001)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the Open Fund of the Key Laboratory for Particle Astrophysics and CosmologyMinistry of Education of China。
文摘In the exploration of celestial bodies,such as Mars,the Moon,and asteroids,X-ray fluorescence analysis has emerged as a critical tool for elemental analysis.However,the varying selection rules and excitation sources introduce complexity.Specifically,these discrepancies can cause variations in the intensities of the characteristic spectral lines emitted by identical elements.These variations,compounded by the minimal energy spacing between these spectral lines,pose substantial challenges for conventional silicon drift detectors(SDD),hindering their ability to accurately differentiate these lines and provide detailed insights into the material structure.To overcome this challenge,a cryogenic X-ray spectrometer based on transition-edge sensor(TES)detector arrays is required to achieve precise measurements.This study measured and analyzed the K-edge characteristic lines of copper and the diverse L-edge characteristic lines of tungsten using a comparative analysis of the electron and X-ray excitation processes.For the electron excitation experiments,copper and tungsten targets were employed as X-ray sources,as they emit distinctive X-ray spectra upon electron-beam bombardment.In the photon excitation experiments,a molybdenum target was used to produce a continuous spectrum with the prominent Mo Kαlines to emit pure copper and tungsten samples.TES detectors were used for the comparative spectroscopic analysis.The initial comparison revealed no substantial differences in the Kαand Kβlines of copper across different excitation sources.Similarly,the Lαlines of tungsten exhibited uniformity under different excitation sources.However,this investigation revealed pronounced differences within the Lβline series.The study found that XRF spectra preferentially excite outer-shell electrons,in contrast to intrinsic spectra,owing to different photon and electron interaction mechanisms.Photon interactions are selection-ruledependent and involve a single electron,whereas electron interactions can involve multiple electrons without such limitations.This leads to varied excitation transitions,as evidenced in the observed Lβline series.
文摘Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,energy,materials,quantum,and microelectronics.Surface science mainly investigates the correspondence between surface property and functionality.Scanning probe microscopy(SPM)techniques are important tools to characterize surface properties because of the capability of atomic-scale imaging,spectroscopy and manipulation at the single-atom level.In this review,we summarize recent advances in surface electronic,magnetic and optical properties characterized mainly by SPM-based methods.We focus on elucidating theπ-magnetism in graphene-based nanostructures,construction of spin qubits on surfaces,topology properties of surface organic structures,STM-based light emission,tip-enhanced Raman spectroscopy and integration of machine learning in SPM studies.
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.
基金supported by the National Natural Science Foundation of China (Nos.21802096,21832004,21902179,21991152,and 21991150)the Shanghai XFEL Beamline Project (SBP) (31011505505885920161A2101001)the support of the Shanghai Sailing Program (19YF1455600)。
文摘An in-depth understanding of the structure-activity relationship between the surface structure,chemical composition,adsorption and desorption of molecules,and their reaction activity and selectivity is necessary for the rational design of high-performance catalysts.Herein,we present a method for studying catalytic mechanisms using a combination of in situ reaction cells and surface science techniques.The proposed system consists of four parts:preparation chamber,temperatureprogrammed desorption(TPD)chamber,quick load-lock chamber,and in situ reaction cell.The preparation chamber was equipped with setups based on the surface science techniques used for standard sample preparation and characterization,including an Ar+sputter gun,Auger electron spectrometer,and a low-energy electron diffractometer.After a well-defined model catalyst was prepared,the sample was transferred to a TPD chamber to investigate the adsorption and desorption of the probe molecule,or to the reaction cell,to measure the catalytic activity.A thermal desorption experiment for methanol on a clean Cu(111)surface was conducted to demonstrate the functionality of the preparation and TPD chambers.Moreover,the repeatability of the in situ reaction cell experiment was verified by CO_(2) hydrogenation on the Ni(110)surface.At a reaction pressure of 800 Torr at 673 K,turnover frequencies for the methanation reaction and reverse water-gas shift reaction were 0.15 and 7.55 Ni atom^(-1) s^(-1),respectively.
基金supported by the Anhui Initiative in Quantum Information Technologiessupport from the National Natural Science Foundation of China(Grant No.11827806)。
文摘We report on experimental measurements of the transition dipole moments(TDMs)between the intermediate state 5s5p^(3)P_(1)and the triplet Rydberg series 5sns^(3)S_(1)in an ultracold strontium gas.Here n is the principal quantum number ranging from 19 to 40.The transition 5s5p^(3)P_(1)–5sns^(3)S_(1)is coupled via an ultraviolet(UV)beam,inducing Autler–Townes splitting of both states.Such a splitting of the intermediate state is spectroscopically measured by using absorption imaging on a narrow transition 5s^(21)S_(0)–5s5p^(3)P_(1)in an ultracold gas of strontium atoms.The power and size of the UV beam are carefully determined,with which the TDMs are extracted from the measured Autler–Townes splitting.The experimentally obtained TDMs are compared to the calculations based on a parametric core potential,on a Coulomb potential with quantum defect,and on the open-source library Alkali Ryderg calculator,finding good agreement with the former two models and significant deviation with the latter.
基金This work was supported by National Natural Science Foundation of China(No.12075304)Natural Science Foundation of Shanghai(No.22ZR1442100)National Key Research and Development Program of China(No.2022YFB3503904).
文摘X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.
基金supported by the start-up funding of ShanghaiTech University in Chinasupported by a user project at the Molecular Foundry (LBNL) and its computing resources administered by the High-Performance Computing Services Group at LBNL+2 种基金supported by the Office of Science and Office of Basic Energy Sciences of the U.S.Department of Energy (Grant No.DE-AC02-05CH11231)the National Energy Research Scientific Computing Center (NERSC),a U.S.Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory (Grant No.DE-AC02-05CH11231)supported by the High-Performance Computing (HPC) Platform of ShanghaiTech University。
文摘Fewest-switches surfacing hopping(FSSH) simulations have been performed with the high-level multi-reference electronic structure method to explore the coupled electronic and nuclear dynamics upon photoexcitation of cyanogen bromide(BrCN). The potential energy surfaces(PES) of BrCN are charted as functions of the Jacobi coordinates(R, θ). An indepth examination of the FSSH trajectories reveals the temporal dynamics of the molecule and the population changes of the lowest twelve states during BrCN's photodissociation process, which presents a rich tapestry of dynamical information.Furthermore, the carbon K-edge x-ray absorption spectroscopy(XAS) is calculated with multi-reference inner-shell spectral simulations. The rotation of the CN fragment and the elongation of the C–Br bond are found to be the reason for the peak shifting in the XAS. Our findings offer a nuanced interpretation for inner-shell probe investigations of BrCN, setting the stage for a deeper understanding of the photodissociation process of cyanogen halides molecules.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334010,12174259,and 11604003)。
文摘The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1604402 and 2022YFA1604403)the National Natural Science Foundation of China (NSFC) (Grant No. 11721404)+3 种基金the Shanghai Rising-Star Program (Grant No. 21QA1406100)the Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1416000)support by the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-20-10139)the Texas A&M Engineering Experimental Station (TEES)
文摘With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within the linear excitation range reveals that electron-phonon coupling and dissipation of photon energy into the bulk of the crystal take tens of picoseconds.On the other hand,the observed spin dynamics indicate a longer time of about 120 ps.To further understand how the lattice degree of freedom is coupled with these dynamics may require the integration of an ultrafast diffraction probe.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604302)the National Natural Science Foundation of China(Grant Nos.U1632266,11927807,and U2032207)the approval of the Proposal Assessing Committee of SiP.ME^(2) platform project(Proposal No.11227902)supported by the National Science Foundation of China。
文摘Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.
基金supported by the National Natural Science Foundation of China(Nos.22225202,92356309,22132007,21991132,22172002)。
文摘Surface chemistry focuses on the investigation of the adsorption,migration,assembly,activation,reaction,and desorption of atoms and molecules at surfaces.Surface chemistry plays the pivotal roles in both fundamental science and applied technology.This review will summarize the recent progresses on surface assembly,synthesis and catalysis investigated mainly by scanning tunneling microscopy and atomic force microscopy.Surface assemblies of water and small biomolecules,construction of Sierpin′ski triangles and surface chirality are summarized.On-surface synthesis of conjugated carbo-and heterocycles and other kinds of carbon nanostructures are surveyed.Surface model catalysis,including single-atom catalysis and electrochemical catalysis,are discussed at the single-atom level.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
基金supported by the National major scientific research instrument development project(No.11927805)National Natural Science Foundation of China Young Scientists Fund(No.12005134)+2 种基金Shanghai-XFEL Beamline Project(SBP)(No.31011505505885920161A2101001)Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)Shanghai Pujiang Program(No.20PJ1410900).
文摘A transition edge sensor(TES)is extremely sensitive to changes in temperature,and combined with a high-Z metal of a certain thickness,it can realize high-energy resolution measurements of particles such as X-rays.X-rays with energies below 10 keV have a weak penetrating ability,hence,only gold or bismuth of a few micrometers in thickness can guarantee a quantum efficiency higher than 70%.Therefore,the entire structure of the TES X-ray detector in this energy range can be realized using a microfabrication process.However,for X-rays or γ-rays from 10 keV to 200 keV,submillimeter absorber layers are required,which cannot be realized using the microfabrication process.This paper first briefly introduces a set of TES X-ray detectors and their auxiliary systems,and then focuses on the introduction of the TES γ-ray detector with an absorber based on a submillimeter lead-tin alloy sphere.The detector achieved a quantum efficiency above 70% near 100 keV and an energy resolution of approximately 161.5 eV at 59.5 keV.
基金supported by PhD research startup foundation of Civil Aviation University of China(Grant No.2020KYQD94)。
文摘Based on the first-principles method,we predict two new stable BN allotropes:C12-BN and O16-BN,which belong to cubic and orthorhombic crystal systems,respectively.It is confirmed that both the phases are thermally and dynamically stable.The results of molecular dynamics simulations suggest that both the BN phases are highly stable even at high temperatures of 1000 K.In the case of mechanical properties,C12-BN has a bulk modulus of 359 GPa and a hardness of 43.4 GPa,making it a novel superhard material with potential technological and industrial applications.Electronic band calculations reveal that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 e V and 3.54 e V,respectively.The XRD spectra of C12-BN and O16-BN are also simulated to provide more information for possible experimental observation.Our findings enrich the BN allotrope family and are expected to stimulate further experimental interest.