There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power ...There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.展开更多
Gallium oxide(Ga_(2)O_(3))has garnered world-wide atten-tion as an ultrawide-bandgap semiconductor material from the area of power electronics and DUV optical devices benefit-ing from its outstanding electronic and op...Gallium oxide(Ga_(2)O_(3))has garnered world-wide atten-tion as an ultrawide-bandgap semiconductor material from the area of power electronics and DUV optical devices benefit-ing from its outstanding electronic and optoelectronic proper-ties.For one thing,since Ga_(2)O_(3)features high critical break-down field of 8 MV/cm and Baliga’s figure of merit(BFOM)of 3444,it is a promising candidate for advanced high-power applications.For another thing,due to the bandgap directly corresponding to the deep-ultraviolet(DUV)region,Ga_(2)O_(3)is widely used in DUV optoelectronic devices.展开更多
We are at dawn of a new era−an era where multiple strong market and technological transformations have called for reexamination of our current electric grid.It has opened the door for new thinking about the existing g...We are at dawn of a new era−an era where multiple strong market and technological transformations have called for reexamination of our current electric grid.It has opened the door for new thinking about the existing grid.People have been talking about the“grid of the future”for a few years now.What should this grid look like?What should be in it and why[1]?And how do we get there?展开更多
Simultaneously imposed challenges of highvoltage insulation,high dv/dt,highswitching frequency,fast protection,and thermal management associated with the adoption of 10 kV SiC MOSFET,often pose nearly insurmountable b...Simultaneously imposed challenges of highvoltage insulation,high dv/dt,highswitching frequency,fast protection,and thermal management associated with the adoption of 10 kV SiC MOSFET,often pose nearly insurmountable barriers to potential users,undoubtedly hindering their penetration in mediumvoltage(MV)power conversion.Key novel technologies such as enhanced gatedriver,auxiliary power supply network,PCB planar dcbus,and highdensity inductor are presented,enabling the SiCbased designs in modular MV converters,overcoming aforementioned challenges.However,purely substituting SiC design instead of Sibased ones in modular MV converters,would expectedly yield only limited gains.Therefore,to further elevate SiCbased designs,novel highbandwidth control strategies such as switchingcycle control(SCC)and integrated capacitorblocked transistor(ICBT),as well as highperformance/highbandwidth communication network are developed.All these technologies combined,overcome barriers posed by stateoftheart Si designs and unlock system level benefits such as very high power density,highefficiency,fast dynamic response,unrestricted line frequency operation,and improved power quality,all demonstrated throughout this paper.展开更多
Power electronics,processing over 50%of world's electric energy,enables very efficient electric energy conversion for a wide range of applications such as electric vehicles,data centers,autonomous driving,robotics...Power electronics,processing over 50%of world's electric energy,enables very efficient electric energy conversion for a wide range of applications such as electric vehicles,data centers,autonomous driving,robotics and smart grids.The availability of low-cost,efficient,and reliable power semiconductor devices that can conduct high current,block high voltage,and switch at high frequencies are key to improving the performance of power electronics systems.展开更多
文摘There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.
文摘Gallium oxide(Ga_(2)O_(3))has garnered world-wide atten-tion as an ultrawide-bandgap semiconductor material from the area of power electronics and DUV optical devices benefit-ing from its outstanding electronic and optoelectronic proper-ties.For one thing,since Ga_(2)O_(3)features high critical break-down field of 8 MV/cm and Baliga’s figure of merit(BFOM)of 3444,it is a promising candidate for advanced high-power applications.For another thing,due to the bandgap directly corresponding to the deep-ultraviolet(DUV)region,Ga_(2)O_(3)is widely used in DUV optoelectronic devices.
文摘We are at dawn of a new era−an era where multiple strong market and technological transformations have called for reexamination of our current electric grid.It has opened the door for new thinking about the existing grid.People have been talking about the“grid of the future”for a few years now.What should this grid look like?What should be in it and why[1]?And how do we get there?
基金conducted under ARPA-e from DOE with the award number DE-AR0000892.
文摘Simultaneously imposed challenges of highvoltage insulation,high dv/dt,highswitching frequency,fast protection,and thermal management associated with the adoption of 10 kV SiC MOSFET,often pose nearly insurmountable barriers to potential users,undoubtedly hindering their penetration in mediumvoltage(MV)power conversion.Key novel technologies such as enhanced gatedriver,auxiliary power supply network,PCB planar dcbus,and highdensity inductor are presented,enabling the SiCbased designs in modular MV converters,overcoming aforementioned challenges.However,purely substituting SiC design instead of Sibased ones in modular MV converters,would expectedly yield only limited gains.Therefore,to further elevate SiCbased designs,novel highbandwidth control strategies such as switchingcycle control(SCC)and integrated capacitorblocked transistor(ICBT),as well as highperformance/highbandwidth communication network are developed.All these technologies combined,overcome barriers posed by stateoftheart Si designs and unlock system level benefits such as very high power density,highefficiency,fast dynamic response,unrestricted line frequency operation,and improved power quality,all demonstrated throughout this paper.
文摘Power electronics,processing over 50%of world's electric energy,enables very efficient electric energy conversion for a wide range of applications such as electric vehicles,data centers,autonomous driving,robotics and smart grids.The availability of low-cost,efficient,and reliable power semiconductor devices that can conduct high current,block high voltage,and switch at high frequencies are key to improving the performance of power electronics systems.