期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
High-skill members in the subseasonal forecast ensemble of extreme cold events in East Asia
1
作者 Xinli Liu Jingzhi Su +1 位作者 Yihao Peng Xiaolei Liu 《Atmospheric and Oceanic Science Letters》 2025年第6期22-28,共7页
Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyz... Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyzing the 34 extreme cold events in East Asia from 1998 to 2020,the authors evaluated the forecast skills of the ECMWF model ensemble members on subseasonal time scales.The results show that while the ensemble mean has limited skills for forecasting extreme cold events at the 3-week lead time,some individual members demonstrate high forecast skills.For most extreme cold events,there are>10%of members among the total ensembles that can well predict the rapid temperature transitions at the 14-day lead time.This highlights the untapped potential of the ECMWF model to forecast extreme cold events on subseasonal time scales.High-skill ensemble members rely on accurate predictions of atmospheric circulation patterns(500-hPa geopotential height,mean sea level pressure)and key weather systems,including the Ural Blocking and Siberian High,that influence extreme cold events. 展开更多
关键词 Subseasonal forecast Forecast skill Ensemble members Extreme cold event
在线阅读 下载PDF
Impact of Improving Radar Reflectivity Assimilation Schemes in High-Resolution Models and Their Combined Application with Convective Environment Parameters on Severe Convective Weather Forecast
2
作者 CHEN Wan-yi DAI Guang-feng +1 位作者 WANG Yong-qing XU Guo-qiang 《Journal of Tropical Meteorology》 2025年第2期212-222,共11页
Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by ... Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by integrating a high-resolution numerical weather prediction model with these convective parameters. Based on the CMA-GD 1-km model and its assimilation system, we conducted repeated tests on radar reflectivity data assimilation and analyzed their impact on nowcasting accuracy. Based on these analyses, we proposed a method to improve model forecasts using the useful indicative information provided by high-frequency radar reflectivity data and convective parameters. The improved method was applied to the CMA-GD 1-km model for nowcasting tests. Evaluations from batch tests and case analysis show that the proposed method significantly reduced the model's false alarm rates and improved its nowcasting performance. 展开更多
关键词 NWP severe convection convective parameters NOWCASTING
在线阅读 下载PDF
Skill improvement of the yearly updated reforecasts in ECMWF S2S prediction from 2016 to 2022 被引量:2
3
作者 Yihao Peng Xiaolei Liu +2 位作者 Jingzhi Su Xinli Liu Yixu Zhang 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期1-7,共7页
在2016年至2022年间,ECMWF次季节预测系统不断升级并逐年完成新的回报试验。本文考察该预测系统逐年升级带来的预测技巧提升潜力.从2米气温和降水来看,在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势;在从第三周开始... 在2016年至2022年间,ECMWF次季节预测系统不断升级并逐年完成新的回报试验。本文考察该预测系统逐年升级带来的预测技巧提升潜力.从2米气温和降水来看,在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势;在从第三周开始的次季节时间尺度上,预测技巧的提升仅限于热带部分区域.MJO预测技巧并不随着模式升级而逐年单调提升.尽管目前S2S预测技巧存在局限性,但目前已有的进展增强了在未来深入合作以提高S2S预测技术的信心. 展开更多
关键词 回报 次季节预测 预测技巧 ECMWF
在线阅读 下载PDF
Classification analysis of prediction skill among ensemble members in MJO subseasonal predictions——based on the results of the CAMS-CSM subseasonal prediction system
4
作者 Yihao Peng Xiaolei Liu +1 位作者 Jingzhi Su Xinli Liu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期8-14,共7页
由于模式误差和初始误差所致,次季节-季节预报技巧整体偏低.国际上多数模式都采用集合预报的方式来提高次季节预报的准确率.热带大气季节内振荡(MJO)作为次季节尺度可预报性的重要来源,其预测水平取决于模式性能和MJO事件本身的物理特性... 由于模式误差和初始误差所致,次季节-季节预报技巧整体偏低.国际上多数模式都采用集合预报的方式来提高次季节预报的准确率.热带大气季节内振荡(MJO)作为次季节尺度可预报性的重要来源,其预测水平取决于模式性能和MJO事件本身的物理特性.根据中国气象科学研究院气候系统模式次季节预测系统的回报结果,结合不同类型MJO事件的特征,对模式集合成员间的预报技巧进行了分类和比较.在集合成员预报技巧普遍较高的一类MJO事件中,对流异常信号持续时间较长,强度较大,强对流异常中心主要位于印度洋区域,并逐渐东传至西太平洋.在集合成员预报技巧多数较差的MJO事件中,对流异常信号的强度最弱,维持时间最短.在集合成员预报技巧优劣参半的类别中,MJO往往持续时间较短,强度较低,在后续传播过程中,对流异常中心多停驻在海洋性大陆区域. 展开更多
关键词 次季节-季节预测 预报技巧 热带大气季节内振荡
在线阅读 下载PDF
Multimodel Ensemble Forecast of Global Horizontal Irradiance at PV Power Stations Based on Dynamic Variable Weight
5
作者 YUAN Bin SHEN Yan-bo +6 位作者 DENG Hua YANG Yang CHEN Qi-ying YE Dong MO Jing-yue YAO Jin-feng LIU Zong-hui 《Journal of Tropical Meteorology》 SCIE 2024年第3期327-336,共10页
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m... In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately. 展开更多
关键词 GHI forecast multimodel ensemble dynamic variable weight PV power station
在线阅读 下载PDF
Skill Assessment of North American Multi-Models Ensemble (NMME) for June-September (JJAS) Seasonal Rainfall over Ethiopia
6
作者 Asaminew Teshome Jie Zhang +6 位作者 Qianrong Ma Stephen E. Zebiak Teferi Demissie Tufa Dinku Asher Siebert Jemal Seid Nachiketa Acharya 《Atmospheric and Climate Sciences》 2022年第1期54-73,共20页
In recent years, there has been increasing demand for high-resolution seasonal climate forecasts at sufficient lead times to allow response planning from users in agriculture, hydrology, disaster risk management, and ... In recent years, there has been increasing demand for high-resolution seasonal climate forecasts at sufficient lead times to allow response planning from users in agriculture, hydrology, disaster risk management, and health, among others. This paper examines the forecasting skill of the North American Multi-model Ensemble (NMME) over Ethiopia during the June to September (JJAS) season. The NMME, one of the multi-model seasonal forecasting systems, regularly generates monthly seasonal rainfall forecasts over the globe with 0.5 <span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 11.5 months lead time. The skill and predictability of seasonal rainfall are assessed using 28 years of hindcast data from the NMME models. The forecast skill is quantified using canonical correlation analysis (CCA) and root mean square error. The results show that the NMME models capture the JJAS seasonal rainfall over central, northern, and northeastern parts of Ethiopia while exhibiting weak or limited skill across western and southwestern Ethiopia. The performance of each model in predicting the JJAS seasonal rainfall is variable, showing greater skill in predicting dry conditions. Overall, the performance of the multi-model ensemble was not consistently better than any single ensemble member. The correlation of observed and predicted </span><span style="font-family:Verdana;">seasonal rainfall for the better performing models</span></span><span style="font-family:Verdana;">—GFDL-CM2p5-FLOR-A06,</span><span style="font-family:Verdana;"> CMC2-CanCM4, GFDL-CM2p5-FLOR-B01 and NASA-GMAO-062012</span><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">is 0.68, 0.58, 0.52, and 0.5, respectively. The COLA-RSMAS-CCSM4, CMC1-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">CanCM3 and NCEP-CFSv2 models exhibit less skill, with correlations less than 0.4. In general, the NMME offers promising skill to predict seasonal rainfall over Ethiopia during the June-September (JJAS) season, motivating further work to assess its performance at longer lead times.</span> 展开更多
关键词 Ethiopia ENSEMBLE June-September Correlation Coefficient SKILL
在线阅读 下载PDF
QBO Disruption-like Events in the China Meteorological Administration Climate Model
7
作者 Yue WANG Jian RAO +1 位作者 Yixiong LU Zefan JU 《Advances in Atmospheric Sciences》 2025年第9期1813-1832,共20页
As a prominent mode of variability in the tropical stratosphere on the interannual timescale,the Quasi-Biennial Oscillation(QBO)can significantly influence global atmospheric circulation and weather patterns.This stud... As a prominent mode of variability in the tropical stratosphere on the interannual timescale,the Quasi-Biennial Oscillation(QBO)can significantly influence global atmospheric circulation and weather patterns.This study explores the dynamic processes of QBO disruptions using the integrated climate model of the China Meteorological Administration(CMA)by nudging the tropical zonal winds toward observations.A comparative analysis with ERA5 reanalysis data shows that the nudged runs accurately replicate the general characteristics of the QBO,including the alternating QBO wind regimes and QBO disruption events.The evolution of the QBO winds is diagnosed using empirical orthogonal function and root-mean-square difference analyses,and the rarity of the disruption events is confirmed in the CMA model.Different aspects of the QBO disruptions and the relevant dynamics are present in the model.Firstly,the momentum budget analysis highlights the crucial roles of extratropical Rossby waves and non-orographic gravity waves in the transition from westerly to easterly winds during a disruption.Secondly,Kelvin waves and non-orographic gravity waves explain much of the transition from easterly to westerly winds near 40 hPa.Thirdly,the positive tendency from enhanced vertical advection further accelerates westerly momentum development via secondary meridional circulation.These findings underscore the importance of nudging techniques in understanding QBO dynamics,which provides valuable insights for future climate model improvements toward better forecasting QBO-related climate variability.Notably,due to model limitations,no QBO disruptions were simulated in the free-run experiments. 展开更多
关键词 Quasi-biennial oscillation(QBO)disruption wave-mean flow interaction China Meteorological Administration(CMA)integrated model
在线阅读 下载PDF
Progress of MJO Prediction at CMA from Phase I to Phase II of the Sub-Seasonal to Seasonal Prediction Project 被引量:2
8
作者 Junchen YAO Xiangwen LIU +3 位作者 Tongwen WU Jinghui YAN Qiaoping LI Weihua JIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1799-1815,共17页
As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates th... As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates the models’capability to simulate and predict the Madden-Julian Oscillation(MJO).Three versions of the Beijing Climate Center Climate System Model(BCC-CSM)are used to conduct historical simulations and re-forecast experiments(referred to as EXP1,EXP1-M,and EXP2,respectively).In simulating MJO characteristics,the newly-developed high-resolution BCC-CSM outperforms its predecessors.In terms of MJO prediction,the useful prediction skill of the MJO index is enhanced from 15 days in EXP1 to 22 days in EXP1-M,and further to 24 days in EXP2.Within the first forecast week,the better initial condition in EXP2 largely contributes to the enhancement of MJO prediction skill.However,during forecast weeks 2–3,EXP2 shows little advantage compared with EXP1-M because the increased skill at MJO initial phases 6–7 is largely offset by the degraded skill at MJO initial phases 2–3.Particularly at initial phases 2–3,EXP1-M skillfully captures the wind field and Kelvin-wave response to MJO convection,leading to the highest prediction skill of the MJO.Our results reveal that,during the participation of the CMA models in the S2S Project,both the improved model initialization and updated model physics played positive roles in improving MJO prediction.Future efforts should focus on improving the model physics to better simulate MJO convection over the Maritime Continent and further improve MJO prediction at long lead times. 展开更多
关键词 Madden-Julian Oscillation(MJO) Subseasonal to Seasonal(S2S) prediction skill improvement initial phase
在线阅读 下载PDF
Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles 被引量:1
9
作者 Jinhe YU Lei BI +1 位作者 Wei HAN Xiaoye ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2024-2039,共16页
Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles.This paper proposes a deep learning(DL)scheme in ... Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles.This paper proposes a deep learning(DL)scheme in conjunction with an optical property database to achieve this goal.Deep neural network(DNN)architectures were obtained from a dataset of the optical properties of super-spheroids with extensive shape parameters,size parameters,and refractive indices.The dataset was computed through the invariant imbedding T-matrix method.Four separate DNN architectures were created to compute the extinction efficiency factor,single-scattering albedo,asymmetry factor,and phase matrix.The criterion for designing these neural networks was the achievement of the highest prediction accuracy with minimal DNN parameters.The numerical results demonstrate that the determination coefficients are greater than 0.999 between the prediction values from the neural networks and the truth values from the database,which indicates that the DNN can reproduce the optical properties in the dataset with high accuracy.In addition,the DNN model can robustly predict the optical properties of particles with high accuracy for shape parameters or refractive indices that are unavailable in the database.Importantly,the ratio of the database size(~127 GB)to that of the DNN parameters(~20 MB)is approximately 6810,implying that the DNN model can be treated as a highly compressed database that can be used as an alternative to the original database for real-time computing of the optical properties of non-spherical particles in radiative transfer and atmospheric models. 展开更多
关键词 non-spherical particles light scattering super-spheroid model deep learning neural network
在线阅读 下载PDF
Comparison of tropical cyclone thermal structures derived from ATMS and synthetic AMSU-A/MHS
10
作者 Wenyu Li Fuzhong Weng 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期29-34,共6页
热带气旋(TC)的暖心反映了其强度和变化.微波探测数据被广泛用于探测TC暖心,但观测到的TC暖心强度可能因仪器而异.本研究利用先进技术微波探测仪(ATMS)的过采样数据重采样至与先进微波探测仪(AMSU-A)一致的亮温,称为类AMSU数据.通过对... 热带气旋(TC)的暖心反映了其强度和变化.微波探测数据被广泛用于探测TC暖心,但观测到的TC暖心强度可能因仪器而异.本研究利用先进技术微波探测仪(ATMS)的过采样数据重采样至与先进微波探测仪(AMSU-A)一致的亮温,称为类AMSU数据.通过对比发现,ATMS的观测更加细致,较好地刻画了TC眼区和云带.使用ATMS和类-AMSU数据反演多个TC的暖心发现,在250 hPa,使用ATMS数据反演的暖心强度比类-AMSU高约1-2K,并且其暖心结构更详细. 展开更多
关键词 热带气旋 暖心 ATMS AMSU-A 微波探测数据
在线阅读 下载PDF
What induced the trend shift of mixed-layer depths in the Antarctic Circumpolar Current region in the mid-1980s?
11
作者 Shan Liu Jingzhi Su +1 位作者 Huijun Wang Cuijuan Sui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期11-21,共11页
An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a... An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a period of weak trends.The MLD deepening trend difference between the two periods were mainly distributed in the western areas in the Drake Passage,the areas north to Victoria Land and Wilkes Land,and the central parts of the South Indian sector.The newly formed ocean current shear due to the meridional shift of the ACC flow axis between the two periods is the dominant driver for the MLD trends shift distributed in the western areas in the Drake Passage and the central parts of the South Indian sector.The saltier trends in the regions north to Victoria Land and Wilkes Land could be responsible for the strengthening mixing processes in this region. 展开更多
关键词 mixed layer depth trend shift Antarctic Circumpolar Current(ACC) flow axis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部