Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power densi...Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power density.However,issues,such as the corrosion and dissolution of the Zn anode,limited wet-tability,and lack of sufficient nucleation sites for Zn plating,have limited their practical application.The introduction of a protective layer comprising of tellurium(Te)nanobelts onto the surface of Zn anode has emerged as a promising approach to overcome these limitations and improve the electrochemical behav-ior by enhancing the safety and wettability of ZIBs,as well as providing numerous nucleation sites for Zn plating.In the presence of a Te-based protective layer,the energy power density of the surface-engineered Zn anode improved significantly(ranging from 310 to 144 W h kg^(-1),over a power density range of 270 to 1,800 W kg^(-1)),and the lifespan capability was extended.These results demonstrate that the proposed strategy of employing Te nanobelts as a protective layer holds great promise for enhancing the energy storage performance of zIBs,making them even more attractive as a viable energy storage solution forthefuture.展开更多
Cysteine residues found in proteins have various functions such as metal binding, nitrosylation, and stabilization of structure. We have done a comparative, computational structural analysis of the cysteine residues i...Cysteine residues found in proteins have various functions such as metal binding, nitrosylation, and stabilization of structure. We have done a comparative, computational structural analysis of the cysteine residues in two proteins from bacteria to get some insight into the differences between metal binding cysteine residues and those involved in structure stabilization. The two target proteins in this study are the periplasmic mercury binding protein (MerP) and the 1-1eucine binding protein (LBP). Both are periplasmic binding proteins from E. coli. We have shown key phenomenon that define cysteines as metal binding or structural in nature.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(RS-2023-00303581,Multiscale Simulation-Driven Development of Cost-Effective and Stable Aqueous Zn Ion Battery with Energy Density of 110 Wh/L for Energy Storage Systems:A Korea-USA Collaboration)。
文摘Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power density.However,issues,such as the corrosion and dissolution of the Zn anode,limited wet-tability,and lack of sufficient nucleation sites for Zn plating,have limited their practical application.The introduction of a protective layer comprising of tellurium(Te)nanobelts onto the surface of Zn anode has emerged as a promising approach to overcome these limitations and improve the electrochemical behav-ior by enhancing the safety and wettability of ZIBs,as well as providing numerous nucleation sites for Zn plating.In the presence of a Te-based protective layer,the energy power density of the surface-engineered Zn anode improved significantly(ranging from 310 to 144 W h kg^(-1),over a power density range of 270 to 1,800 W kg^(-1)),and the lifespan capability was extended.These results demonstrate that the proposed strategy of employing Te nanobelts as a protective layer holds great promise for enhancing the energy storage performance of zIBs,making them even more attractive as a viable energy storage solution forthefuture.
文摘Cysteine residues found in proteins have various functions such as metal binding, nitrosylation, and stabilization of structure. We have done a comparative, computational structural analysis of the cysteine residues in two proteins from bacteria to get some insight into the differences between metal binding cysteine residues and those involved in structure stabilization. The two target proteins in this study are the periplasmic mercury binding protein (MerP) and the 1-1eucine binding protein (LBP). Both are periplasmic binding proteins from E. coli. We have shown key phenomenon that define cysteines as metal binding or structural in nature.