Three-dimensional porous poly-lactic acid(PLA) scaffold was fabricated using fused deposition modeling(FDM) method including 30%, 50% and 70% nominal porosity. Study of phases in initial polymeric material and printed...Three-dimensional porous poly-lactic acid(PLA) scaffold was fabricated using fused deposition modeling(FDM) method including 30%, 50% and 70% nominal porosity. Study of phases in initial polymeric material and printed scaffolds was done by X-ray diffraction(XRD), and no significant phase difference was observed due to the manufacturing process, and the poly-lactic acid retains its crystalline properties. The results of the mechanical properties evaluation by the compression test show that the mechanical properties of the scaffold have decreased significantly with increasing the porosity of scaffold. The microstructure of scaffolds were studied by scanning electron microscope(SEM), showing that the pores had a regular arrangement and their morphology changed with porosity change. The mechanical properties of the poly-lactic acid scaffolds printed using fused deposition modeling, can be adapted to the surrounding tissue, by porosity change.展开更多
The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Exp...The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.展开更多
The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff...The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff distances and different conditions of explosive charge.Samples were postweld heat treated for 4 and 16 h in the furnace at 250°C and 500°C and then air cooled.Laboratory studies using optical microscopy,scanning electron microscopy,and microhardness testing were used to evaluate the welded samples.Microstructural examinations showed that by increasing the standoff distance and the explosive charge,the interface of bronze to steel became wavier.The microhardness test result showed that the hardness of the samples was higher near the joint interface compared with other areas because of the intensive plastic deformation,which was caused by the explosion force.The results show that increasing the heat treatment temperature and time caused the intermetallic compounds’layer thickness to increase,and,because of the higher diffusion of copper and tin,the iron amount in the intermetallic compounds decreased.Also,because of the increase in heat treatment temperature and time,internal stresses were released,and the interface hardness decreased.展开更多
An investigation was carried out to assess the applicability of transient liquid phase bonding of two dissimilar super-alloys with different interlayers. The effect of using three types of interlayer such as BNi-2, BN...An investigation was carried out to assess the applicability of transient liquid phase bonding of two dissimilar super-alloys with different interlayers. The effect of using three types of interlayer such as BNi-2, BNi-3, and BNi-9 on microstructure and mechanical properties was studied in the GTD-111/IN-718 system at 1100 ℃ for different bonding time. To determine the compositional changes and microstructure in the joint region, field emission scanning electron microscopy equipped with energy dispersive spectroscopy was utilized. The formation of Ni_(3)B in the athermally solidified zone(ASZ) is controlled by the B content and, accordingly, the morphology of Ni_(3)Si is governed by the Si content. The Cr content might impede the relocation of B from the interlayer into the base metal and the formation of CrB inside the ASZ is dominated by the Cr content. The high micro-hardness of the eutectic compounds is originated from the formation of boride matrixes such as Ni or Cr boride. The shear strength of the joint using BNi-9 after the completion of isothermal solidification is lower compared that that using BNi-3 and BNi-2, which could be related to the absence of Si in the filler metals constituent and the significant presence of Cr in BNi-9.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
In this study,nano-biocomposites of polycaprolactone(PCL)as the matrix and different amounts of nanofluorapatite(nFA)(0,10,20 and 30 wt.%)as the reinforcement were prepared for possible scaffold fabrication using the ...In this study,nano-biocomposites of polycaprolactone(PCL)as the matrix and different amounts of nanofluorapatite(nFA)(0,10,20 and 30 wt.%)as the reinforcement were prepared for possible scaffold fabrication using the fused filament fabrication(FFF)3D printer.Field Emission Scanning Electron Microscopy(FE-SEM)and Energy Dispersive Spectroscopy(EDS)showed that nFA particles were well distributed in the PCL matrix.X-ray diffraction analysis(XRD)and Fourier Transform Infrared Spectroscopy(FTIR)depicted no chemical interaction between the elements of the composite.Differential Scanning Calorimetric(DSC)analysis was then used to assess the thermal properties of the composites,suggesting that this could be due to the amorphous phase formation of the intermolecular hydrogen bonds between PCL and nFA,resulting in the suppression of PCL crystallization.The results of mechanical characterization also showed that the addition of nFA up to 20 wt.%to the PCL increased the tensile and yield strength,as well as reducing the elongation at both yield and failure points and increasing the Young modulus.The best mechanical properties were obtained for the PCL/20nFA composite.Tensile strength and Young modulus were increased by 30%and 179%,respectively;meanwhile,elongation of PCL/20nFA was decreased by 70%,as compared to the naked PCL.These changes could be attributed to the better distribution of the nFA filler in the PCL matrix.According to the obtained results,PCL/20nFA could be regarded as a good composite in terms of the mechanical properties for the regeneration of the bone tissue.展开更多
The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface.Titanium surface samples were modified using H2O2 solution at different time...The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface.Titanium surface samples were modified using H2O2 solution at different times up to 72 h to boost their bioactivity.According to the results of the field emission scanning electron microscopy test,some nanostructures are formed on the surface of treated titanium samples and increased in size by increasing the time of treatment up to 24 h.After 24 h of application,the sharpness of nanostructures decreased and the micro-cracks and discontinuity in the coating surface increased.The results of the X-ray diffraction study and Raman spectroscopy revealed that anatase(TiO2)was formed on the surface of treated titanium samples.The peak intensity of Raman spectroscopy increased with an improvement in treatment time of up to 24 h and then decreased due to the discontinuity of the coating.Full wettability and ability to form apatite were reached at 6 h of treatment.It is clear that the treatment time has a significant effect on the surface treatment of titanium using the H2O2 solution.展开更多
文摘Three-dimensional porous poly-lactic acid(PLA) scaffold was fabricated using fused deposition modeling(FDM) method including 30%, 50% and 70% nominal porosity. Study of phases in initial polymeric material and printed scaffolds was done by X-ray diffraction(XRD), and no significant phase difference was observed due to the manufacturing process, and the poly-lactic acid retains its crystalline properties. The results of the mechanical properties evaluation by the compression test show that the mechanical properties of the scaffold have decreased significantly with increasing the porosity of scaffold. The microstructure of scaffolds were studied by scanning electron microscope(SEM), showing that the pores had a regular arrangement and their morphology changed with porosity change. The mechanical properties of the poly-lactic acid scaffolds printed using fused deposition modeling, can be adapted to the surrounding tissue, by porosity change.
文摘The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.
文摘The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff distances and different conditions of explosive charge.Samples were postweld heat treated for 4 and 16 h in the furnace at 250°C and 500°C and then air cooled.Laboratory studies using optical microscopy,scanning electron microscopy,and microhardness testing were used to evaluate the welded samples.Microstructural examinations showed that by increasing the standoff distance and the explosive charge,the interface of bronze to steel became wavier.The microhardness test result showed that the hardness of the samples was higher near the joint interface compared with other areas because of the intensive plastic deformation,which was caused by the explosion force.The results show that increasing the heat treatment temperature and time caused the intermetallic compounds’layer thickness to increase,and,because of the higher diffusion of copper and tin,the iron amount in the intermetallic compounds decreased.Also,because of the increase in heat treatment temperature and time,internal stresses were released,and the interface hardness decreased.
文摘An investigation was carried out to assess the applicability of transient liquid phase bonding of two dissimilar super-alloys with different interlayers. The effect of using three types of interlayer such as BNi-2, BNi-3, and BNi-9 on microstructure and mechanical properties was studied in the GTD-111/IN-718 system at 1100 ℃ for different bonding time. To determine the compositional changes and microstructure in the joint region, field emission scanning electron microscopy equipped with energy dispersive spectroscopy was utilized. The formation of Ni_(3)B in the athermally solidified zone(ASZ) is controlled by the B content and, accordingly, the morphology of Ni_(3)Si is governed by the Si content. The Cr content might impede the relocation of B from the interlayer into the base metal and the formation of CrB inside the ASZ is dominated by the Cr content. The high micro-hardness of the eutectic compounds is originated from the formation of boride matrixes such as Ni or Cr boride. The shear strength of the joint using BNi-9 after the completion of isothermal solidification is lower compared that that using BNi-3 and BNi-2, which could be related to the absence of Si in the filler metals constituent and the significant presence of Cr in BNi-9.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.
文摘In this study,nano-biocomposites of polycaprolactone(PCL)as the matrix and different amounts of nanofluorapatite(nFA)(0,10,20 and 30 wt.%)as the reinforcement were prepared for possible scaffold fabrication using the fused filament fabrication(FFF)3D printer.Field Emission Scanning Electron Microscopy(FE-SEM)and Energy Dispersive Spectroscopy(EDS)showed that nFA particles were well distributed in the PCL matrix.X-ray diffraction analysis(XRD)and Fourier Transform Infrared Spectroscopy(FTIR)depicted no chemical interaction between the elements of the composite.Differential Scanning Calorimetric(DSC)analysis was then used to assess the thermal properties of the composites,suggesting that this could be due to the amorphous phase formation of the intermolecular hydrogen bonds between PCL and nFA,resulting in the suppression of PCL crystallization.The results of mechanical characterization also showed that the addition of nFA up to 20 wt.%to the PCL increased the tensile and yield strength,as well as reducing the elongation at both yield and failure points and increasing the Young modulus.The best mechanical properties were obtained for the PCL/20nFA composite.Tensile strength and Young modulus were increased by 30%and 179%,respectively;meanwhile,elongation of PCL/20nFA was decreased by 70%,as compared to the naked PCL.These changes could be attributed to the better distribution of the nFA filler in the PCL matrix.According to the obtained results,PCL/20nFA could be regarded as a good composite in terms of the mechanical properties for the regeneration of the bone tissue.
基金This work was financially supported by Grant-in-Aid(Nos.19K10250 and 18K09686)from Scientific Research of the Japan Society for the Promotion of Science(JSPS).
文摘The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface.Titanium surface samples were modified using H2O2 solution at different times up to 72 h to boost their bioactivity.According to the results of the field emission scanning electron microscopy test,some nanostructures are formed on the surface of treated titanium samples and increased in size by increasing the time of treatment up to 24 h.After 24 h of application,the sharpness of nanostructures decreased and the micro-cracks and discontinuity in the coating surface increased.The results of the X-ray diffraction study and Raman spectroscopy revealed that anatase(TiO2)was formed on the surface of treated titanium samples.The peak intensity of Raman spectroscopy increased with an improvement in treatment time of up to 24 h and then decreased due to the discontinuity of the coating.Full wettability and ability to form apatite were reached at 6 h of treatment.It is clear that the treatment time has a significant effect on the surface treatment of titanium using the H2O2 solution.