Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr...Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.展开更多
Anions in the electrolyte are usually ignored in conventional"rocking-chair"batteries because only cationic de-/intercalation is considered.An ingenious scheme combining LiMn_(0.7)Fe_(0.3)PO_(4)(LMFP@C)and g...Anions in the electrolyte are usually ignored in conventional"rocking-chair"batteries because only cationic de-/intercalation is considered.An ingenious scheme combining LiMn_(0.7)Fe_(0.3)PO_(4)(LMFP@C)and graphite as a hybrid cathode for lithium-ion batteries(LIBs)is elaborately designed in order to exploit the potential value of anions for battery performance.The hybrid cathode has a higher conductivity and energy density than any of the individual components,allowing for the co-utilization of cations and an-ions through the de-/intercalation of Li^(+)and PF_(6)−over a wide voltage range.The optimal compound with a weight mix ratio of LMFP@C:graphite=5:1 can deliver the highest specific capacity of nearly 140 mA h/g at 0.1 C and the highest voltage plateau of around 4.95 V by adjusting the appropriate mixing ratio.In addition,cyclic voltammetry was used to investigate the electrode kinetics of Li^(+)and PF_(6)−dif-fusion in the hybrid compound at various scan rates.In situ X-ray diffraction is also performed to further demonstrate the structural evolution of the hybrid cathode during the charge/discharge process.展开更多
Selective electrocatalysis of two-electron oxygen reduction reaction(2e^(-)ORR)has been recognized as a sustainable and on-site process for hydrogen peroxide(H_(2)O_(2))production.Great progress has been achieved for ...Selective electrocatalysis of two-electron oxygen reduction reaction(2e^(-)ORR)has been recognized as a sustainable and on-site process for hydrogen peroxide(H_(2)O_(2))production.Great progress has been achieved for 2e^(-)ORR in alkaline media.However,it is challenged by insufficient activity and selectiv-ity of the catalysts in acidic electrolytes.Herein,we report sulfur-poisoned PtNi/C catalysts(PtNiSx/C)that could regulate ORR from the 4e^(-)to 2e^(-)pathway.The identified PtNiS0.6/C offers high activity in terms of onset potential of∼0.69 V(vs.RHE)and∼80%selectivity.The mass activity is also compara-ble and outperforms representative Pt-based precious and transition-metal-based catalysts.In addition,it is interestingly found that the Faradaic efficiency further increased to 95%during the long-term elec-trolysis test due to Ni atom surface migration.The electrochemical production of the H_(2)O_(2)system was applied to the electro-Fenton process,which has realized the effective degradation of organic pollutants.This work offers a strategy by sulfur poisoning PtNi/C catalyst to realize Pt-based 2e^(-)ORR active catalysts to electrolysis of H_(2)O_(2)in acidic media.展开更多
Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs)...Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs).However,there are still some obstacles like large size of K+to commercial PIBs applications.Therefore,rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+accommodated and fast diffused.Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties.Accordingly,quite a few recent anode materials with different dimensions in PIBs have been reported,mainly involving in carbon materials,metal-based chalcogenides(MCs),metal-based oxides(MOs),and alloying materials.Among these anodes,nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation.Besides,MCs,MOs,and alloying materials with nanostructures can effectively alleviate their stress changes.Herein,these materials are classified into 0D,1D,2D,and 3D.Particularly,the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined.Meanwhile,some strategies are proposed to deal with the current disadvantages.Hope that the readers are enlightened from this review to carry out further experiments better.展开更多
Electrocatalytic production of hydrogen peroxide(H_(2)O_(2))by two-electron oxygen reduction reaction(2e^(-)ORR)under acidic condition has been considered to have great application value.Co nanoparticles(CoNPs)coupled...Electrocatalytic production of hydrogen peroxide(H_(2)O_(2))by two-electron oxygen reduction reaction(2e^(-)ORR)under acidic condition has been considered to have great application value.Co nanoparticles(CoNPs)coupled with N-doped carbon are a class of potential electrocatalysts.The effective strategies to further enhance their performances are to improve the active sites and stability.Herein,the material containing ultrafine CoNPs confined in a nitrogen-doped carbon matrix(NC@CoNPs)was synthesized by pyrolyzing corresponding precursors,which was obtained through regulating the topological structure of ZIF-67/ZIF-8 with dopamine(DA).The DA self-polymerization process induced the formation of CoNPs with smaller sizes and formed polydopamine film decreased the detachment of CoNPs from the catalyst.High density of Co-N_(x) active sites and defective sites could be identified on NC@CoNPs,leading to high activity and H_(2)O_(2) selectivity,with an onset potential of 0.57 V(vs.RHE)and∼90%selectivity in a wide potential range.An on-site electrochemical removal of organic pollutant was achieved rapidly through an electro-Fenton process,demonstrating its great promise for on-site water treatment application.展开更多
Cyano substitution is vital to the molecular design of polymer semiconductors toward highly efficient organic solar cells.However,how regioselectivity impacts relevant optoelectronic properties in cyano-substituted bi...Cyano substitution is vital to the molecular design of polymer semiconductors toward highly efficient organic solar cells.However,how regioselectivity impacts relevant optoelectronic properties in cyano-substituted bithiophene systems remain poorly understood.Three regioisomeric cyano-functionalized dialkoxybithiophenes BT_(HH),BT_(HT),and BT_(TT) with headto-head,head-to-tail,and tail-to-tail linkage,respectively,were synthesized and characterized in this work.The resulting polymer semiconductors(PBDTBTs)based on these building blocks were prepared accordingly.The regiochemistry and property relationships of PBDTBTs were investigated in detail.The BTHH moiety has a higher torsional barrier than the analogs BT_(HT) and BT_(TT),and the regiochemistry of dialkoxybithiophenes leads to fine modulation in the optoelectronic properties of these polymers,such as optical absorption,band gap,and energy levels of frontier molecular orbitals.Organic field-effect transistors based on PBDTBT_(HH) had higher hole mobility(4.4×10^(-3) cm^(2)/(V·s))than those(ca.10^(-4) cm^(2)/(V·s))of the other two polymer analogs.Significantly different short-circuit current densities and fill factors were obtained in polymer solar cells using PBDTBTs as the electron donors.Such difference was probed in greater detail by performing space-charge-limited current mobility,thin-film morphology,and transient photocurrent/photovoltage characterizations.The findings highlight that the BTHH unit is a promising building block for the construction of polymer donors for highperformance organic photovoltaic cells.展开更多
With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature soli...With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS_(4)compounded with graphene oxide(SbPS_(4)/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS_(4)shows a high theoretical specific capacity(1335 mAh/g)according to the conversion-alloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS_(4)/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS_(4)compounded with 10%GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS_(4)/GO anode has a promising application potential for SIBs.展开更多
Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing hi...Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing highly active,selective and cost-effective electrocatalysts.The electrosynthesis of H2O2 in acidic media is more practical owing to its stability and no need for further purification.We herein report a phosphorus and selenium tuning Co-based non-precious catalyst(CoPSe)toward two-electron oxygen reduction reaction(2e–ORR)to produce H2O2 in acidic media.The starting point of using both P and Se is finding a balance between strong ORR activity of CoSe and weak activity of CoP.The results demonstrated that the CoPSe catalyst exhibited the optimized 2e–ORR activity compared with CoP and CoSe.It disclosed an onset potential of 0.68 V and the H2O2 selectivity 76%-85%in a wide potential range(0–0.5 V).Notably,the CoPSe catalyst overcomes a significant challenge of a narrow-range selectivity for transitionmetal based 2e–ORR catalysts.Finally,combining with electro-Fenton reaction,an on-site system was constructed for efficient degradation of organic pollutants.This work provides a promising non-precious Co-based electrocatalyst for the electrosynthesis of H2O2 in acidic media.展开更多
As an acidic glycoprotein,carcinoembryonic antigen(CEA)is of great value as a broad-spectrum tumor marker in the differential diagnosis and surveillance of malignant tumors.In this work,we report an electrochemical ap...As an acidic glycoprotein,carcinoembryonic antigen(CEA)is of great value as a broad-spectrum tumor marker in the differential diagnosis and surveillance of malignant tumors.In this work,we report an electrochemical aptasensor for the ultrasensitive and highly selective detection of CEA,taking advantage of the dual amplification by the boronate affinity-assisted electrochemically controlled atom transfer radical polymerization(BA-eATRP).Specifically,the BAeATRP-based electrochemical aptasensing of CEA involves the capture of target antigens by nucleic acid aptamers,the covalent crosslinking of ATRP initiators to CEA antigens via the selective interactions between the phenylboronic acid(PBA)group and the cis-diol group of the monosaccharide residues,and the collection of the ferrocene(Fc)reporters via the eATRP of ferrocenylmethyl methacrylate(FcMMA).As CEA is decorated with hundreds of cis-diol groups,the BA-based crosslinking can result in the labeling of each CEA with hundreds of ATRP initiators;furthermore,the eATRP of FcMMA results in the surface-initiated growth of long-chain ferrocenyl polymers,leading to the tethering of each ATRP initiator-conjugated site with hundreds to thousands of Fc reporters.Such that,the BAeATRP can result in the efficient labeling of each CEA with a plenty of Fc reporters.Under the optimized conditions,the BA-eATRP-based strategy enables the highly selective aptasensing of CEA at a concentration as low as 0.34 pg·mL^(-1),with a linear range of 1.01000 pg·mL^(-1).Besides,this aptasensor has been successfully applied to the quantitative analysis of CEA in human serum.The BA-eATRP-based electrochemical aptasensor is cost-effective and simple in operation,holding broad application prospect in the ultrasensitive and highly selective detection of CEA.展开更多
In view of rich potassium resources and their working potential,potassium-ion batteries(PIBs)are deemed as next generation rechargeable batteries.Owing to carbon materials with the preponderance of durability and econ...In view of rich potassium resources and their working potential,potassium-ion batteries(PIBs)are deemed as next generation rechargeable batteries.Owing to carbon materials with the preponderance of durability and economic price,they are widely employed in PIBs anode materials.Currently,porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances.Herein,nitrogen-doped mesoporous carbon spheres(MCS)are synthesized by a facile hard template method.The MCS demonstrate larger interlayer spacing in a short range,high specific surface area,abundant mesoporous structures and active sites,enhancing K-ion migration and diffusion.Furthermore,we screen out the pyrolysis temperature of 900°C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances.In detail,the optimized MCS-7-900 electrode achieves high rate capacity(107.9 mAh g^(−1) at 5000 mA g^(−1))and stably brings about 3600 cycles at 1000 mA g^(−1).According to electrochemical kinetic analysis,the capacitive-controlled effects play dominant roles in total storage mechanism.Additionally,the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS.展开更多
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction...Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.展开更多
All-polymer solar cells(all-PSCs)have significantly improved long-term stability and mechanical stretchability.The power conversion efficiency(PCE)of all-PSCs has been rapidly improved from∼1%to now over∼17%,driven ...All-polymer solar cells(all-PSCs)have significantly improved long-term stability and mechanical stretchability.The power conversion efficiency(PCE)of all-PSCs has been rapidly improved from∼1%to now over∼17%,driven by rational molecular design,blend morphology optimization,and device engineering.However,most all-PSCs are generally processed with halogenated solvents,hazardous for human health and the global environment.Achieving high-performance all-PSCs with halogen-free solvent processing remains a challenge.This feature article presents recent advances in green-solvent-processable all-PSCs from the material design and morphological control perspective,and further reviews progress in using more environmentally friendly solvents(i.e.,water or alcohol)to achieve genuinely sustainable and environmentally friendly manufacturing all-PSCs.Finally,we provide an outlook on the challenges and opportunities for large-scale manufacturing of green-solvent-processable all-PSCs.展开更多
Thiophene and its derivatives have garnered substantial interest in the organic electronics sector,particularly in the development of polymer solar cells(PSCs).Herein,we present the synthesis of a new thiophene deriva...Thiophene and its derivatives have garnered substantial interest in the organic electronics sector,particularly in the development of polymer solar cells(PSCs).Herein,we present the synthesis of a new thiophene derivative,ClE-T,by a simple two-step method,comprising a monothiophene functionalized with a chlorine atom and an ester group.The ClE-T offers unique benefits resulting from the combination of the two groups.The incorporation of ClE-T into a polymer yields a polymer donor poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-chloro-4-(methoxycarbonyl)-2,5-thiophenediyl]](PBDT-ClET).ClE-T demonstrates synergistic effects that significantly downshift energy levels and enhance the crystallinity of PBDT-ClET.In conclusion,PBDT-ClET is incorporated as a third component in all-polymer solar cells(all-PSCs)to enhance charge transport,reduce energy loss,and achievemore favorable phase separation.Finally,the all-PSCs employing PBDT-ClET achieve a notable power conversion efficiency(PCE)of 19.04%,which is not only among the highest values in all-PSCs but also represents the record PCE achieved for eco-friendly all-PSCs.This work underscores the promising potential of the ClE-T unit as a building block for constructing easily synthesized polymers for high-performance PSCs.展开更多
One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared success...One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.展开更多
As a cathode for sodium-ion batteries(SIBs),Na3V2(PO4)2F3(NVPF)with 3D open framework is a promising candidate due to its high working voltage and large theoretical capacity.However,the severe capacity degradation and...As a cathode for sodium-ion batteries(SIBs),Na3V2(PO4)2F3(NVPF)with 3D open framework is a promising candidate due to its high working voltage and large theoretical capacity.However,the severe capacity degradation and poor rate capability hinder its practical applications.The present study demonstrated the optimization of Na-storage performance of NVPF via delicate lattice modulation.Aliovalent substitution of V^(3^(+))at Na^(+)in NVPF induces the generation of electronic defects and expansion of Na^(+)-migration channels,resulting in the enhancement in electronic conductivity and acceleration of Na^(+)-migration kinetics.It is disclosed that the formed stronger Na O bonds with high ionicity than V O bonds lead to the significant increase in structural stability and ionicity in the Na^(+)-substituted NVPF(NVPF-Nax).The aforementioned effects of Na^(+)substitution achieve the unprecedented electrochemical performance in the optimized Na_(3.14)V1.93Na0.07(PO_(4))_(2)F_(3)(NVPF-Na_(0.07)).As a result,NVPF-Na0.07 delivers a high-rate capability(77.5 mAh g^(−1)at 20 C)and ultralong cycle life(only 0.027%capacity decay per cycle over 1000 cycles at 10 C).Sodium-ion full cells are designed using NVPF-Na0.07 as cathode and Se@reduced graphene oxide as anode.The full cells exhibit excellent wide-temperature electrochemical performance from−25 to 25C with an outstanding rate capability(96.3 mAh g^(−1)at 20 C).Furthermore,it delivered an excellent cycling performance over 300 cycles with a capacity retention exceeding 90%at 0.5 C under different temperatures.This study demonstrates a feasible strategy for the development of advanced cathode materials with excellent electrochemical properties to achieve high-efficiency energy storage.展开更多
Nitrite(NO_(2)_(-))is a well-known inorganic pollutant in food and environment that can trigger severe environmental and healthy problems.Consequently,establishing accurate NO_(2)_(-)detection method is very important...Nitrite(NO_(2)_(-))is a well-known inorganic pollutant in food and environment that can trigger severe environmental and healthy problems.Consequently,establishing accurate NO_(2)_(-)detection method is very important for food security,environment monitoring and human health.In this work,green fluorescent carbon dots(CDs)with a high fluorescence quantum yield(QY)of 36.13%are prepared for NO_(2)_(-)detection.The CDs are prepared by one-pot hydrothermal carbonization and polymerization of acriflavine.After carbonization,the anti-photobleaching property of CDs significantly enhanced compared to acriflavine.Under acidic conditions,the added of NO_(2)_(-)selectively induces the aggregation and fluorescence quenching of CDs.A good fluorescence linearity response in the range of 50 nM to 10μM can be developed for NO_(2)_(-)quantitative analysis,with a detection limit of 11.6 nM.Owing to the diazotization reaction of NO_(2)_(-)and the phenylamine groups on the surface of CDs,this method shows excellent selectivity compared to common ions and amino acids.Furthermore,the proposed method shows favorable results in the detection of real water and Cantonese style sausage sample.This study provides a simple and e fficient method for NO_(2)_(-)detection in food and environment.展开更多
Bithiophene imide (BTI)-based polymers have been promising photovoltaic materials due to their high mobility and tunable energy levels. However, BTI polymers have rarely been revisited since organic solar cells (OSCs)...Bithiophene imide (BTI)-based polymers have been promising photovoltaic materials due to their high mobility and tunable energy levels. However, BTI polymers have rarely been revisited since organic solar cells (OSCs) entered the era of non-fullerene electron acceptors (NFEA) likely owing to their incompatibility with NFEAs. Herein, fine-tuning the aggregation and orientation of BTI-based donor-π-acceptor (D-π-A) polymer donors was achieved by incorporating the linear n-octyl group into thiophene π-bridge. The resulting polymer donor G15 shows excellent compatibility with NFEA L15 (polymer acceptor). The G15-based all-polymer OSCs achieve high power conversion efficiency of 15.17%. This is significantly higher than that (< 5%) of its analogue with isomerized branched alkyl chains and also among the highest values for all-polymer OSCs. The results highlight that well-tailored BTI polymer donors are attractive photovoltaic materials for further exploration in non-fullerene organic solar cells.展开更多
Developing electrocatalysts with high performance and low cost for the oxygen evolution reaction(OER)is of great importance for fabricating renewable energy storage and conversion devices.Here,a series of boron-doped ...Developing electrocatalysts with high performance and low cost for the oxygen evolution reaction(OER)is of great importance for fabricating renewable energy storage and conversion devices.Here,a series of boron-doped graphene(BG)-supported bimetallic oxides of Co and Ni were obtained and served as OER electrocatalysts.Surprisingly,the annealed Co-Ni-Ox/BG with a Co/Ni ratio of 1:1 exhibits high performance toward oxygen evolution in alkaline electrolyte.The overpotential is only 310 mV at the current density of 10 mA cm-2,superior to many mono-metallic oxides reported before,and even comparable to the commercial RuO2.The regulation of charge distribution in bimetallic oxides and the strong synergistic coupling effects together contribute to the superior electrocatalytic performance of the Co-Ni-Ox/BG toward OER.This study also offers several effective ways to design high-performance OER electrocatalysts for water splitting.展开更多
Van der Waals(vdW)heterojunctions,with their unique electronic and optoelectronic properties,have become promising candidates for photodetector applications.Amplifying the contribution of the depletion region in vdW h...Van der Waals(vdW)heterojunctions,with their unique electronic and optoelectronic properties,have become promising candidates for photodetector applications.Amplifying the contribution of the depletion region in vdW heterojunction,which would enhance both of the collection efficiency and speed of the photogenerated carriers,presents an effective strategy for achieving high performance vdW heterojunction photodetectors.Herein,a fully depleted vdW heterojunction photodetector is built on two-dimensional(2D)semiconductor materials(GaTe and InSe)layered on a pattered bottom electrode in vertical structure,in which the generation and motion of carriers are exclusively achieved in the depletion region.Attributed to the intrinsic built-in electric field,the elimination of series resistance and the depletion region confinement of carriers,the as-fabricated photodetector exhibits prominent photovoltaic properties with a high open-circuit voltage of 0.465 V,as well as photoresponse characteristics with outstanding responsivity,detectivity and photoresponse speed of 63.7 A/W,3.88×10^(13)Jones,and 32.7 ms respectively.The overall performance of this fully depleted GaTe/InSe vdW heterojunctions photodetectors are ranking high among the top level of 2D materials based photodetectors.It indicates the device architecture can provide new opportunities for the fabrication of high-performance photodetectors.展开更多
The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have improved considerably in recent years with the development of fused-ring electron acceptors(FREAs).Currently,FREAs-based OSCs have achieved high ...The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have improved considerably in recent years with the development of fused-ring electron acceptors(FREAs).Currently,FREAs-based OSCs have achieved high PCEs of over 19%in single-junction OSCs.Whereas the relatively high synthetic complexity and the low yield of FREAs typically result in high production costs,hindering the commercial application of OSCs.In contrast,noncovalently fused-ring electron acceptors(NFREAs)can compensate for the shortcomings of FREAs and facilitate large-scale industrial production by virtue of the simple structure,facile synthesis,high yield,low cost,and reasonable efficiency.At present,OSCs based on NFREAs have exceeded the PCEs of 15%and are expected to reach comparable efficiency as FREAs-based OSCs.Here,recent advances in NFREAs in this review provide insight into improving the performance of OSCs.In particular,this paper focuses on the effect of the chemical structures of NFREAs on the molecule conformation,aggregation,and packing mode.Various molecular design strategies,such as core,side-chain,and terminal group engineering,are presented.In addition,some novel polymer acceptors based on NFREAs for all-polymer OSCs are also introduced.In the end,the paper provides an outlook on developing efficient,stable,and low-cost NFREAs for achieving commercial applications.展开更多
基金the financial support from the National Natural Science Foundation of China(No.91963118)the 111 Project(No.B13013)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University),Ministry of Education,China(No.2020004)。
文摘Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.
基金financially supported by the National Natural Science Foundation of China(No.91963118,and No.52173246)the Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013)。
文摘Anions in the electrolyte are usually ignored in conventional"rocking-chair"batteries because only cationic de-/intercalation is considered.An ingenious scheme combining LiMn_(0.7)Fe_(0.3)PO_(4)(LMFP@C)and graphite as a hybrid cathode for lithium-ion batteries(LIBs)is elaborately designed in order to exploit the potential value of anions for battery performance.The hybrid cathode has a higher conductivity and energy density than any of the individual components,allowing for the co-utilization of cations and an-ions through the de-/intercalation of Li^(+)and PF_(6)−over a wide voltage range.The optimal compound with a weight mix ratio of LMFP@C:graphite=5:1 can deliver the highest specific capacity of nearly 140 mA h/g at 0.1 C and the highest voltage plateau of around 4.95 V by adjusting the appropriate mixing ratio.In addition,cyclic voltammetry was used to investigate the electrode kinetics of Li^(+)and PF_(6)−dif-fusion in the hybrid compound at various scan rates.In situ X-ray diffraction is also performed to further demonstrate the structural evolution of the hybrid cathode during the charge/discharge process.
基金financially supported by the National Natu-ral Science Foundation of China(Nos.21805052 and 22227804)the Guangdong Basic and Applied Basic Research Foundation(No.2023B1515020110)+4 种基金the Science and Technology Research Project of Guangzhou(Nos.202102020787 and 2023A03J0030)the De-partment of Science&Technology of Guangdong Province(No.2022A156)the Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities(No.2023KSYS008)the Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.20225546)the College Student Innovation and Entrepreneurship Training Program of Guangzhou University(No.XJ202311078029).
文摘Selective electrocatalysis of two-electron oxygen reduction reaction(2e^(-)ORR)has been recognized as a sustainable and on-site process for hydrogen peroxide(H_(2)O_(2))production.Great progress has been achieved for 2e^(-)ORR in alkaline media.However,it is challenged by insufficient activity and selectiv-ity of the catalysts in acidic electrolytes.Herein,we report sulfur-poisoned PtNi/C catalysts(PtNiSx/C)that could regulate ORR from the 4e^(-)to 2e^(-)pathway.The identified PtNiS0.6/C offers high activity in terms of onset potential of∼0.69 V(vs.RHE)and∼80%selectivity.The mass activity is also compara-ble and outperforms representative Pt-based precious and transition-metal-based catalysts.In addition,it is interestingly found that the Faradaic efficiency further increased to 95%during the long-term elec-trolysis test due to Ni atom surface migration.The electrochemical production of the H_(2)O_(2)system was applied to the electro-Fenton process,which has realized the effective degradation of organic pollutants.This work offers a strategy by sulfur poisoning PtNi/C catalyst to realize Pt-based 2e^(-)ORR active catalysts to electrolysis of H_(2)O_(2)in acidic media.
基金the Start-up Funding of Jinan University(Grant No.88016105 and Grant No.55800001)the discipline construction outstanding young backbone project(Grant No.12819023)the Fundamental Research Funds for the Central Universities(Grant No.11620317).
文摘Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs).However,there are still some obstacles like large size of K+to commercial PIBs applications.Therefore,rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+accommodated and fast diffused.Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties.Accordingly,quite a few recent anode materials with different dimensions in PIBs have been reported,mainly involving in carbon materials,metal-based chalcogenides(MCs),metal-based oxides(MOs),and alloying materials.Among these anodes,nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation.Besides,MCs,MOs,and alloying materials with nanostructures can effectively alleviate their stress changes.Herein,these materials are classified into 0D,1D,2D,and 3D.Particularly,the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined.Meanwhile,some strategies are proposed to deal with the current disadvantages.Hope that the readers are enlightened from this review to carry out further experiments better.
基金financial support from the Natural Science Foundation of China(Nos.21805052 and 2278092)Science and Technology Research Project of Guangzhou(Nos.202102020787 and 202201000002)+1 种基金Department of Science&Technology of Guangdong Province(ID:2022A156),Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.20225546)the Innovation&Entrepreneurship for the College Students of Guangzhou University(No.XJ202111078175).
文摘Electrocatalytic production of hydrogen peroxide(H_(2)O_(2))by two-electron oxygen reduction reaction(2e^(-)ORR)under acidic condition has been considered to have great application value.Co nanoparticles(CoNPs)coupled with N-doped carbon are a class of potential electrocatalysts.The effective strategies to further enhance their performances are to improve the active sites and stability.Herein,the material containing ultrafine CoNPs confined in a nitrogen-doped carbon matrix(NC@CoNPs)was synthesized by pyrolyzing corresponding precursors,which was obtained through regulating the topological structure of ZIF-67/ZIF-8 with dopamine(DA).The DA self-polymerization process induced the formation of CoNPs with smaller sizes and formed polydopamine film decreased the detachment of CoNPs from the catalyst.High density of Co-N_(x) active sites and defective sites could be identified on NC@CoNPs,leading to high activity and H_(2)O_(2) selectivity,with an onset potential of 0.57 V(vs.RHE)and∼90%selectivity in a wide potential range.An on-site electrochemical removal of organic pollutant was achieved rapidly through an electro-Fenton process,demonstrating its great promise for on-site water treatment application.
基金supported by the National Natural Science Foundation of China(Nos.52173172,52173171,and 21801124)the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110892)China Postdoctoral Science Foundation(2021M700062)the Shenzhen Science and Technology Innovation Commission(JCYJ202103243104813035 and JCYJ20180504165709042)the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology)financial support from the Songshan Lake Materials Laboratory(2021SLABFK03)financial support from the NRF of Korea(2016M1A2A2940911,2017K2A9A2A12000315)supported by the Center for Computational Science and Engineering of Southern University of Science and Technology。
文摘Cyano substitution is vital to the molecular design of polymer semiconductors toward highly efficient organic solar cells.However,how regioselectivity impacts relevant optoelectronic properties in cyano-substituted bithiophene systems remain poorly understood.Three regioisomeric cyano-functionalized dialkoxybithiophenes BT_(HH),BT_(HT),and BT_(TT) with headto-head,head-to-tail,and tail-to-tail linkage,respectively,were synthesized and characterized in this work.The resulting polymer semiconductors(PBDTBTs)based on these building blocks were prepared accordingly.The regiochemistry and property relationships of PBDTBTs were investigated in detail.The BTHH moiety has a higher torsional barrier than the analogs BT_(HT) and BT_(TT),and the regiochemistry of dialkoxybithiophenes leads to fine modulation in the optoelectronic properties of these polymers,such as optical absorption,band gap,and energy levels of frontier molecular orbitals.Organic field-effect transistors based on PBDTBT_(HH) had higher hole mobility(4.4×10^(-3) cm^(2)/(V·s))than those(ca.10^(-4) cm^(2)/(V·s))of the other two polymer analogs.Significantly different short-circuit current densities and fill factors were obtained in polymer solar cells using PBDTBTs as the electron donors.Such difference was probed in greater detail by performing space-charge-limited current mobility,thin-film morphology,and transient photocurrent/photovoltage characterizations.The findings highlight that the BTHH unit is a promising building block for the construction of polymer donors for highperformance organic photovoltaic cells.
基金the financial support from the National Natural Science Foundation of China(Nos.91963118,51801030)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University,No.2020004)。
文摘With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS_(4)compounded with graphene oxide(SbPS_(4)/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS_(4)shows a high theoretical specific capacity(1335 mAh/g)according to the conversion-alloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS_(4)/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS_(4)compounded with 10%GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS_(4)/GO anode has a promising application potential for SIBs.
基金the National Natural Science Foundation of China(Nos.21805052,21974031,2278092)Science and Technology Research Project of Guangzhou(Nos.202102020787 and 202201000002)+2 种基金Department of Science&Technology of Guangdong Province(No.2022A156)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.20225546)the Innovation&Entrepreneurship for the College Students of Guangzhou University(No.XJ202111078175).
文摘Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing highly active,selective and cost-effective electrocatalysts.The electrosynthesis of H2O2 in acidic media is more practical owing to its stability and no need for further purification.We herein report a phosphorus and selenium tuning Co-based non-precious catalyst(CoPSe)toward two-electron oxygen reduction reaction(2e–ORR)to produce H2O2 in acidic media.The starting point of using both P and Se is finding a balance between strong ORR activity of CoSe and weak activity of CoP.The results demonstrated that the CoPSe catalyst exhibited the optimized 2e–ORR activity compared with CoP and CoSe.It disclosed an onset potential of 0.68 V and the H2O2 selectivity 76%-85%in a wide potential range(0–0.5 V).Notably,the CoPSe catalyst overcomes a significant challenge of a narrow-range selectivity for transitionmetal based 2e–ORR catalysts.Finally,combining with electro-Fenton reaction,an on-site system was constructed for efficient degradation of organic pollutants.This work provides a promising non-precious Co-based electrocatalyst for the electrosynthesis of H2O2 in acidic media.
基金This work was co-supported by the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010618)the Young Talent Support Project of Guangzhou Association for Science and Technology(No.QT-2023-009)+2 种基金the National Natural Science Foundation of China(No.21904026,21974031)the Guangzhou Science and Technology Project(No.202201010600,202201020170,202201000002)the Innovation Training Program for College Students of Guangzhou University(No.202211078113,S202111078031).
文摘As an acidic glycoprotein,carcinoembryonic antigen(CEA)is of great value as a broad-spectrum tumor marker in the differential diagnosis and surveillance of malignant tumors.In this work,we report an electrochemical aptasensor for the ultrasensitive and highly selective detection of CEA,taking advantage of the dual amplification by the boronate affinity-assisted electrochemically controlled atom transfer radical polymerization(BA-eATRP).Specifically,the BAeATRP-based electrochemical aptasensing of CEA involves the capture of target antigens by nucleic acid aptamers,the covalent crosslinking of ATRP initiators to CEA antigens via the selective interactions between the phenylboronic acid(PBA)group and the cis-diol group of the monosaccharide residues,and the collection of the ferrocene(Fc)reporters via the eATRP of ferrocenylmethyl methacrylate(FcMMA).As CEA is decorated with hundreds of cis-diol groups,the BA-based crosslinking can result in the labeling of each CEA with hundreds of ATRP initiators;furthermore,the eATRP of FcMMA results in the surface-initiated growth of long-chain ferrocenyl polymers,leading to the tethering of each ATRP initiator-conjugated site with hundreds to thousands of Fc reporters.Such that,the BAeATRP can result in the efficient labeling of each CEA with a plenty of Fc reporters.Under the optimized conditions,the BA-eATRP-based strategy enables the highly selective aptasensing of CEA at a concentration as low as 0.34 pg·mL^(-1),with a linear range of 1.01000 pg·mL^(-1).Besides,this aptasensor has been successfully applied to the quantitative analysis of CEA in human serum.The BA-eATRP-based electrochemical aptasensor is cost-effective and simple in operation,holding broad application prospect in the ultrasensitive and highly selective detection of CEA.
基金This work was financially supported by the Start-up Funding of Jinan University(88016105 and 55800001)the discipline construction outstanding young backbone project(12819023)+1 种基金the Fundamental Research Funds for the Central Universities(21620317)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110611 and 2021A1515010362).
文摘In view of rich potassium resources and their working potential,potassium-ion batteries(PIBs)are deemed as next generation rechargeable batteries.Owing to carbon materials with the preponderance of durability and economic price,they are widely employed in PIBs anode materials.Currently,porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances.Herein,nitrogen-doped mesoporous carbon spheres(MCS)are synthesized by a facile hard template method.The MCS demonstrate larger interlayer spacing in a short range,high specific surface area,abundant mesoporous structures and active sites,enhancing K-ion migration and diffusion.Furthermore,we screen out the pyrolysis temperature of 900°C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances.In detail,the optimized MCS-7-900 electrode achieves high rate capacity(107.9 mAh g^(−1) at 5000 mA g^(−1))and stably brings about 3600 cycles at 1000 mA g^(−1).According to electrochemical kinetic analysis,the capacitive-controlled effects play dominant roles in total storage mechanism.Additionally,the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS.
基金supported by the National Natural Science Foundation of China(91963118 and 52173246)Science Technology Program of Jilin Province(20200201066JC)the 111 Project(B13013)。
文摘Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52173172,52173171 and 21801124)the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(No.2021B1515020027)+3 种基金GuangDong Basic and Applied Basic Research Foundation(No.2021A1515110892)China Postdoctoral Science Foundation(No.2021M700062)the Shenzhen Science and Technology Innovation Commission(Nos.JCYJ202103243104813035 and JCYJ20180504165709042)the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology).X.G.is thankful for the financial support from the Songshan Lake Materials Laboratory(No.2021SLABFK03).Our work was also supported by the Center for Computational Science and Engineering of SUSTech.
文摘All-polymer solar cells(all-PSCs)have significantly improved long-term stability and mechanical stretchability.The power conversion efficiency(PCE)of all-PSCs has been rapidly improved from∼1%to now over∼17%,driven by rational molecular design,blend morphology optimization,and device engineering.However,most all-PSCs are generally processed with halogenated solvents,hazardous for human health and the global environment.Achieving high-performance all-PSCs with halogen-free solvent processing remains a challenge.This feature article presents recent advances in green-solvent-processable all-PSCs from the material design and morphological control perspective,and further reviews progress in using more environmentally friendly solvents(i.e.,water or alcohol)to achieve genuinely sustainable and environmentally friendly manufacturing all-PSCs.Finally,we provide an outlook on the challenges and opportunities for large-scale manufacturing of green-solvent-processable all-PSCs.
基金supported National Natural Science Foundation of China(grant nos.52422313,52173172,and 52173171)Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(grant no.PPCL2023-15)+7 种基金supported by University Students’Innovation Training Program(grant no.XJ202311078037)the Department of Education of Guangdong Province(grant no.2023KSY008)Research project of Guangzhou University(grant nos.RC2023030 and YJ2023052)the Department of Education of Guangdong Province(grant no.2023KSY008)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(grant no.202255464)the Research&Development Projects in Key Areas of Guangdong Province,China(grant no.2019B010933001)supported by the Center for Computational Science and Engineering at the Southern University of Science and Technologysupport from the National Research Foundation of Korea(grant nos.2019R1A6A1A11044070 and 2020M3H4A3081814).
文摘Thiophene and its derivatives have garnered substantial interest in the organic electronics sector,particularly in the development of polymer solar cells(PSCs).Herein,we present the synthesis of a new thiophene derivative,ClE-T,by a simple two-step method,comprising a monothiophene functionalized with a chlorine atom and an ester group.The ClE-T offers unique benefits resulting from the combination of the two groups.The incorporation of ClE-T into a polymer yields a polymer donor poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-chloro-4-(methoxycarbonyl)-2,5-thiophenediyl]](PBDT-ClET).ClE-T demonstrates synergistic effects that significantly downshift energy levels and enhance the crystallinity of PBDT-ClET.In conclusion,PBDT-ClET is incorporated as a third component in all-polymer solar cells(all-PSCs)to enhance charge transport,reduce energy loss,and achievemore favorable phase separation.Finally,the all-PSCs employing PBDT-ClET achieve a notable power conversion efficiency(PCE)of 19.04%,which is not only among the highest values in all-PSCs but also represents the record PCE achieved for eco-friendly all-PSCs.This work underscores the promising potential of the ClE-T unit as a building block for constructing easily synthesized polymers for high-performance PSCs.
基金supported by the National Natural Science Foundation of China(91963118)the Fundamental Research Funds for the Central Universities(2412019ZD010).
文摘One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.
基金111 Project,Grant/Award Number:B13013Education Department of Jilin Province,Grant/Award Number:.JJKH20201179KJ+1 种基金Science Technology Program of Jilin Province,Grant/Award Number:20200201066JCNational Natural Science Foundation of China,Grant/Award Number:91963118。
文摘As a cathode for sodium-ion batteries(SIBs),Na3V2(PO4)2F3(NVPF)with 3D open framework is a promising candidate due to its high working voltage and large theoretical capacity.However,the severe capacity degradation and poor rate capability hinder its practical applications.The present study demonstrated the optimization of Na-storage performance of NVPF via delicate lattice modulation.Aliovalent substitution of V^(3^(+))at Na^(+)in NVPF induces the generation of electronic defects and expansion of Na^(+)-migration channels,resulting in the enhancement in electronic conductivity and acceleration of Na^(+)-migration kinetics.It is disclosed that the formed stronger Na O bonds with high ionicity than V O bonds lead to the significant increase in structural stability and ionicity in the Na^(+)-substituted NVPF(NVPF-Nax).The aforementioned effects of Na^(+)substitution achieve the unprecedented electrochemical performance in the optimized Na_(3.14)V1.93Na0.07(PO_(4))_(2)F_(3)(NVPF-Na_(0.07)).As a result,NVPF-Na0.07 delivers a high-rate capability(77.5 mAh g^(−1)at 20 C)and ultralong cycle life(only 0.027%capacity decay per cycle over 1000 cycles at 10 C).Sodium-ion full cells are designed using NVPF-Na0.07 as cathode and Se@reduced graphene oxide as anode.The full cells exhibit excellent wide-temperature electrochemical performance from−25 to 25C with an outstanding rate capability(96.3 mAh g^(−1)at 20 C).Furthermore,it delivered an excellent cycling performance over 300 cycles with a capacity retention exceeding 90%at 0.5 C under different temperatures.This study demonstrates a feasible strategy for the development of advanced cathode materials with excellent electrochemical properties to achieve high-efficiency energy storage.
基金the support from National Youth Foundation of China(No.21904027)the Natural Science Foundation of Guangdong Province(2019A1515011328)Featured Innovation Project of Guangdong Province O ffice of Education(2018KTSCX180)
文摘Nitrite(NO_(2)_(-))is a well-known inorganic pollutant in food and environment that can trigger severe environmental and healthy problems.Consequently,establishing accurate NO_(2)_(-)detection method is very important for food security,environment monitoring and human health.In this work,green fluorescent carbon dots(CDs)with a high fluorescence quantum yield(QY)of 36.13%are prepared for NO_(2)_(-)detection.The CDs are prepared by one-pot hydrothermal carbonization and polymerization of acriflavine.After carbonization,the anti-photobleaching property of CDs significantly enhanced compared to acriflavine.Under acidic conditions,the added of NO_(2)_(-)selectively induces the aggregation and fluorescence quenching of CDs.A good fluorescence linearity response in the range of 50 nM to 10μM can be developed for NO_(2)_(-)quantitative analysis,with a detection limit of 11.6 nM.Owing to the diazotization reaction of NO_(2)_(-)and the phenylamine groups on the surface of CDs,this method shows excellent selectivity compared to common ions and amino acids.Furthermore,the proposed method shows favorable results in the detection of real water and Cantonese style sausage sample.This study provides a simple and e fficient method for NO_(2)_(-)detection in food and environment.
基金support from the Songshan Lake Mate-rials Laboratory(2021SLABFK03)This work is supported by the National Natural Science Foundation of China(52173172,52173171,and 21801124)+4 种基金the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)the Guangdong Basic and Applied Basic Research Foundation(2021A1515110892)the China Postdoctoral Science Foundation(2021M700062)the Shenzhen Science and Technology Innovation Commission JCYJ202103243104813035 and JCYJ20180504165709042)the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology).
文摘Bithiophene imide (BTI)-based polymers have been promising photovoltaic materials due to their high mobility and tunable energy levels. However, BTI polymers have rarely been revisited since organic solar cells (OSCs) entered the era of non-fullerene electron acceptors (NFEA) likely owing to their incompatibility with NFEAs. Herein, fine-tuning the aggregation and orientation of BTI-based donor-π-acceptor (D-π-A) polymer donors was achieved by incorporating the linear n-octyl group into thiophene π-bridge. The resulting polymer donor G15 shows excellent compatibility with NFEA L15 (polymer acceptor). The G15-based all-polymer OSCs achieve high power conversion efficiency of 15.17%. This is significantly higher than that (< 5%) of its analogue with isomerized branched alkyl chains and also among the highest values for all-polymer OSCs. The results highlight that well-tailored BTI polymer donors are attractive photovoltaic materials for further exploration in non-fullerene organic solar cells.
基金the financial supports from the National Natural Science Foundation of China(21902062 and 21705056)the Natural Science Foundation of Shandong Province(ZR2019YQ10 and ZR2018PB009)+1 种基金the Young Taishan Scholars Program(tsqn201812080)the Open Funds of the State Key Laboratory of Electroanalytical Chemistry(SKLEAC201901)。
文摘Developing electrocatalysts with high performance and low cost for the oxygen evolution reaction(OER)is of great importance for fabricating renewable energy storage and conversion devices.Here,a series of boron-doped graphene(BG)-supported bimetallic oxides of Co and Ni were obtained and served as OER electrocatalysts.Surprisingly,the annealed Co-Ni-Ox/BG with a Co/Ni ratio of 1:1 exhibits high performance toward oxygen evolution in alkaline electrolyte.The overpotential is only 310 mV at the current density of 10 mA cm-2,superior to many mono-metallic oxides reported before,and even comparable to the commercial RuO2.The regulation of charge distribution in bimetallic oxides and the strong synergistic coupling effects together contribute to the superior electrocatalytic performance of the Co-Ni-Ox/BG toward OER.This study also offers several effective ways to design high-performance OER electrocatalysts for water splitting.
基金supported by the State Key Research Development Program of China(Grant No.2019YFB2203503)National Natural Science Fund(Grant Nos.61875138,61961136001,62104153,62105211 and U1801254)+3 种基金Natural Science Foundation of Guangdong Province(2018B030306038 and 2020A1515110373)Science and Technology Projects in Guangzhou(no.202201000002)Science and Technology Innovation Commission of Shenzhen(JCYJ20180507182047316 and 20200805132016001)Natural Science Foundation of Jilin Province(Grant No.YDZJ202201ZYTS429)。
文摘Van der Waals(vdW)heterojunctions,with their unique electronic and optoelectronic properties,have become promising candidates for photodetector applications.Amplifying the contribution of the depletion region in vdW heterojunction,which would enhance both of the collection efficiency and speed of the photogenerated carriers,presents an effective strategy for achieving high performance vdW heterojunction photodetectors.Herein,a fully depleted vdW heterojunction photodetector is built on two-dimensional(2D)semiconductor materials(GaTe and InSe)layered on a pattered bottom electrode in vertical structure,in which the generation and motion of carriers are exclusively achieved in the depletion region.Attributed to the intrinsic built-in electric field,the elimination of series resistance and the depletion region confinement of carriers,the as-fabricated photodetector exhibits prominent photovoltaic properties with a high open-circuit voltage of 0.465 V,as well as photoresponse characteristics with outstanding responsivity,detectivity and photoresponse speed of 63.7 A/W,3.88×10^(13)Jones,and 32.7 ms respectively.The overall performance of this fully depleted GaTe/InSe vdW heterojunctions photodetectors are ranking high among the top level of 2D materials based photodetectors.It indicates the device architecture can provide new opportunities for the fabrication of high-performance photodetectors.
基金Natural Science Foundation for Distinguished Young Scholars of Guangdong Province,Grant/Award Number:2021B1515020027Science and Technology Projects in Guangzhou,Grant/Award Number:202201000002+4 种基金Shenzhen Science and Technology Innovation Commission,Grant/Award Numbers:JCYJ202103243104813035,JCYJ20180504165709042GuangDong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110892China Postdoctoral Science Foundation,Grant/Award Number:2021M700062Open Fund of the State Key Laboratory of Luminescent Materials and Devices,Grant/Award Number:2022-skllmd-17X.G.,H.S.,and Y.J.are thankful for the financial support from the Songshan Lake Materials Laboratory,Grant/Award Number:2021SLABFK03。
文摘The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have improved considerably in recent years with the development of fused-ring electron acceptors(FREAs).Currently,FREAs-based OSCs have achieved high PCEs of over 19%in single-junction OSCs.Whereas the relatively high synthetic complexity and the low yield of FREAs typically result in high production costs,hindering the commercial application of OSCs.In contrast,noncovalently fused-ring electron acceptors(NFREAs)can compensate for the shortcomings of FREAs and facilitate large-scale industrial production by virtue of the simple structure,facile synthesis,high yield,low cost,and reasonable efficiency.At present,OSCs based on NFREAs have exceeded the PCEs of 15%and are expected to reach comparable efficiency as FREAs-based OSCs.Here,recent advances in NFREAs in this review provide insight into improving the performance of OSCs.In particular,this paper focuses on the effect of the chemical structures of NFREAs on the molecule conformation,aggregation,and packing mode.Various molecular design strategies,such as core,side-chain,and terminal group engineering,are presented.In addition,some novel polymer acceptors based on NFREAs for all-polymer OSCs are also introduced.In the end,the paper provides an outlook on developing efficient,stable,and low-cost NFREAs for achieving commercial applications.