Castor(Ricinus communis L.)is one of the top 10 oil crops in the world,and inflorescence is a trait that directly affects its yield.Phospholipase C(PLCs)is involved in many plant activities and metabolic processes.To ...Castor(Ricinus communis L.)is one of the top 10 oil crops in the world,and inflorescence is a trait that directly affects its yield.Phospholipase C(PLCs)is involved in many plant activities and metabolic processes.To study the functions of PLC family genes in the regulation of the inflorescence development of the female line of Lm-type castor aLmAB2,we determined the expression levels of six PLC family genes of three types of inflorescences of aLmAB2(isofemale line,female line,bisexual line)at different developmental stages.The results showed that the 6 genes of the castor PLC family had relative expression levels at different developmental stages of the three types of inflorescences.The subcellular location of all six protein products was the cell membrane.The six genes were heterologously overexpressed in Arabidopsis thaliana to obtain the T3 generation-resistant Arabidopsis thaliana plants.The results showed that the overexpression of six genes significantly promoted the maturation of Arabidopsis thaliana,the growth of lateral moss,and the development of flowers and pods,but the development of basal leaves and stem leaves of Arabidopsis thaliana was significantly inhibited.According to homology analysis,it is speculated that PLC2,PLC2M,PLC2N,PLC4,PLC4X2,and PLC6 genes have the same regulatory function.展开更多
Castor bean(Ricinus communis L.),is one of the top 10 oilseed crops in the world and,therefore,of high economic value.Hybridization is one of the most effective ways to breed new varieties with high yield,high oil con...Castor bean(Ricinus communis L.),is one of the top 10 oilseed crops in the world and,therefore,of high economic value.Hybridization is one of the most effective ways to breed new varieties with high yield,high oil content,and better stress resistance.Therefore,prediction of desired traits in castor hybrid offspring is particularly important.In this study,proteomic analysis was performed to identify differentially expressed proteins(DEPs)in seeds between castor hybrid offspring and their female(Lm female line aLmAB2)and male parents(CSR·181).Among the DEPs upregulated in the seeds of hybrid offspring,the majority were related to seed yield and stress tolerance,while some were related to oil synthesis and fatty acid synthesis and metabolism in seeds.In other words,the hybrid offspring showed heterosis for seed yield,stress tolerance,oil synthesis,and fatty acid synthesis and metabolism when compared with their parents.Further,real-time quantitative polymerase chain reaction assays were performed on 12 genes encoding DEPs involved in oil synthesis,pollen abortion,yield,and stress tolerance of seeds.The results showed that the expression levels of the 12 genes were consistent with those of the DEPs.展开更多
Castor(Ricinus communis L.)is one of ten oil crops in the world and has complex inflorescence styles.Generally,castor has three inflorescence types:single female inflorescence(SiFF),standard female inflorescence(StFF)...Castor(Ricinus communis L.)is one of ten oil crops in the world and has complex inflorescence styles.Generally,castor has three inflorescence types:single female inflorescence(SiFF),standard female inflorescence(StFF)and bisexual inflorescence(BF).StFF is realized as a restorer line and as a maintainer line,which was applied to castor hybrid breeding.However,the developmental mechanism of the three inflorescences is not clear.Therefore,we used proteomic techniques to analyze different inflorescence styles.A total of 72 diferentially abundant protein species(DAPs)were detected.These DAPs are primarily involved in carbon and energy metabolism and carbon fixation in the photosynthetic organism pathway.The results showed that DAPs are involved in photosynthesis to control the distribution of imported carbohydrates and exported photoassimilates and thus affect the inflorescence development of castor.In addition,these DAPs are also involved in cysteine and methionine metabolism.Quantitative real-time PCR(qRT-PCR)results demonstrated that the proteomics data collected in this study were reliable.Our findings indicate that the carbon cycle and amino acid metabolism influence the inflorescence development of castor.展开更多
An efficient plant regeneration protocol was established for castor bean (Ricinus communis L.), in which 0.3 mg L-1 thidiazuron (TDZ) induced shoot clusters and increased the number of adventitious shoots from hyp...An efficient plant regeneration protocol was established for castor bean (Ricinus communis L.), in which 0.3 mg L-1 thidiazuron (TDZ) induced shoot clusters and increased the number of adventitious shoots from hypocotyl tissue. Our results showed that treatment under dark conditions significantly promoted the average number of shoots per explant to 37.36±4.54 (with a 6-d treatment). Modified 1/2 Murashige and Skoog (MS) basal medium supplemented with 440 mg L-1 Ca2+, 0.2 mg L-1 gibberellic acid and 0.1 mg L-1 TDZ significantly increased shoot elongation rates and lowered vitrification rates. Further- more, 1/2 MS media supplemented with 0.2 mg L-11-naphthaleneacetic acid induced a higher rooting rate compared with other culture conditions.展开更多
Castor,scientifically known as Ricinus communis L.,is among the top ten oil crops globally.It is considered a renewable resource and is commonly referred to as‘green oil’.Castor seeds contain castor oil as their mai...Castor,scientifically known as Ricinus communis L.,is among the top ten oil crops globally.It is considered a renewable resource and is commonly referred to as‘green oil’.Castor seeds contain castor oil as their main component,which is predominantly composed of ricinoleic acid.This study utilized RNAi technology to silence the NPC6 gene in NO.2129 castor,resulting in the creation of mutant plants L1 and L2.The weight of 100 dry seed kernels from L1 and L2 exceeds that from NO.2129.The crude fat and ricinoleic acid levels of L1 and L2 were higher than those of NO.2129 at various developmental stages.In the proteomics analysis of 60-day-old castor seeds,a total of 21 differentially expressed proteins were identified,out of which 19 were successfully recognized.Eleven of the differentially expressed proteins identified were legumins,which play a crucial role in nutrient storage within the seed.Silencing the NPC6 gene results in the accumulation of ricinoleic acid in castor seeds.The findings of this study not only enhance our knowledge of NPC6’s role in regulating castor seed oil synthesis but also offer fresh perspectives for investigating oil synthesis and accumulation in other plant species.展开更多
The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor infl...The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences.In this study,we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage.In comparison to the MI(complete pistil without willow leaves),290 and 89 differentially expressed genes(DEGs)were found in the SFI(complete pistil with willow leaves)and the BI(monoecious inflorescence),respectively.Among the DEGs,104 and 88 were upregulated in the SFI and BI,respectively,compared to the MI.In addition,186 DEGs and 1 DEG were downregulated in the SFI and BI compared to the MI.Moreover,we conducted GO and KEGG enrichment analyses of the DEGs.In comparison to the MI,the SFI and BI exhibited the enrichment of functional branches in DEGs,specifically in pollen wall assembly,pollen development,and cellular component assembly involved in morphogenesis.In our study,RADL5 showed low expression levels between SFI-vs.-MI types.In addition,we found that the expression of NAC in the SFI differed from that in MI and BI,and some genes related to hormonal signaling changed their expression levels during inflorescence differentiation.These results reveal the genetic mechanism of sex genotypes in castor,which will not only guide researchers in the breeding of castor but also provide a reference for genetic research on other flowering plants.展开更多
Introduction: In spite of significant progress towards eliminating mother-to-child transmission (MCT) of HIV by 2025, trends in vertical mother-to-child transmission are still worrying in sub-Saharan African countries...Introduction: In spite of significant progress towards eliminating mother-to-child transmission (MCT) of HIV by 2025, trends in vertical mother-to-child transmission are still worrying in sub-Saharan African countries. This study aims to take stock of the factors associated with HIV MCT at the level of peripheral health training. Patients and Methods: This was a descriptive and analytical retrospective study, over a five-year period from January 1<sup>st</sup>, 2017 to December 31<sup>st</sup>, 2021. The study population was represented by HIV-positive women and their cared infants in the Parent-Child Transmission Prevention Unit (PCTP) of the Castors Urban Health Center (CUHC). Results: 288 medical records were selected out of a total of 347 HIV-positive mothers followed. HIV seroprevalence in the population of women who received PreNatal Consultation (PNC) during the study period was 8.2%. The HIV MCT rate was 3.7%. HIV+ mothers followed were mostly young (average age of 28), not living in a couple (96.9%), poorly educated (58.7%) and not engaged in income-generating activity (58.4%). They had all received triple therapy and the period of initiation of antiretroviral (ARV) therapy was in the majority of cases during the first trimester. Factors associated with MCT were: primiparity (OR = 18.4 [5.55 - 61.05];Khi<sup>2</sup> = 32.61;p < 0.001), late discovery of infection during large or after childbirth (OR = 0.03 [0.007 - 0.10];Khi<sup>2</sup> = 55.22;p < 0.001), WHO Clinical Stage 2 and 3 (OR = 0.007 [0.001 - 0.03];Khi<sup>2</sup> = 108.73;p < 0.001), CD4 count 200/mm<sup>3</sup> (OR = 14.12 [4.03 - 57.20];Khi<sup>2</sup> = 21.68;p < 0.001), viral load > 1000 copies/mm<sup>3</sup> (OR = 8.85 [2.33 - 43.20];Khi<sup>2</sup> = 10.46;p = 0.001), prolonged labor (OR = 12.33 [3.45 - 57.25];Khi<sup>2</sup> = 18.47;p < 0.001), premature rupture of membranes (OR = 24.03 [6.97 - 96.01];Khi<sup>2</sup> = 40.60;p <sup>2</sup> = 5.96;p = 0.014), and artificial or mixed breastfeeding (OR = 0.01 [0.002 - 0.043];Khi<sup>2</sup> = 97.65;p Conclusion: Taking into account the risk factors for PCTP is essential if we want to achieve the goal of “Zero New Infections in Children by the year 2025”.展开更多
蓖麻(Ricinus communis L.)是一种冷敏感作物,解析其响应低温胁迫的关键调控基因,对于选育耐低温蓖麻品种具有重要的理论意义。以蓖麻耐低温品种‘通蓖5号’为材料,构建15℃(低温)和25℃(适温)萌发条件下完全展开的子叶cDNA文库,利用Ill...蓖麻(Ricinus communis L.)是一种冷敏感作物,解析其响应低温胁迫的关键调控基因,对于选育耐低温蓖麻品种具有重要的理论意义。以蓖麻耐低温品种‘通蓖5号’为材料,构建15℃(低温)和25℃(适温)萌发条件下完全展开的子叶cDNA文库,利用Illumina测序技术进行转录组测序(RNA-Seq),筛选差异表达基因(differentially expressed genes, DEGs)。结果表明:借助RNA-Seq技术共筛选到1 530个DEGs,其中低温相对于适温表达上调的DEGs有848个,表达下调的DEGs为682个;对1 530个DEGs进行GO功能分类和富集分析显示,共有953个DEGs被注释到GO功能三大分类的57个亚类中,涉及生物学过程、细胞成分及分子功能的DEGs比例分别为88.46%、69.67%和25.71%;KEGG功能分类显示,低温相对于适温表达上调的DEGs有243个,被富集到201个代谢通路中,其中显著富集的通路包括细胞周期、激素信号转导、DNA复制、细胞周期-酵母、减数分裂酵母和孕酮介导的卵母细胞成熟等20个通路,差异基因数富集最多的代谢通路为细胞周期;利用qRT-PCR对上调表达且显著富集的8个DEGs进行了表达分析,证实了转录组测序结果的准确性。该研究将为揭示蓖麻种子低温条件下萌发的分子机制提供理论依据。展开更多
基金the following agencies:National Natural Science Foundation of China(31860071)New Agricultural Research and Reform Practice Project of the Ministry of Education(2020114)+8 种基金Grassland Talent Innovation Team of Inner Mongolia Autonomous Region-Castor Molecular Breeding Research Innovative Talent Team(2022)Inner Mongolia University for Nationalities 2022 Basic Research Business Funds for Universities Directly under the Autonomous Region(237)the Natural Science Foundation of Inner Mongolia Autonomous Region(2021 MS03008)In 2023,the Department of Science and Technology of Inner Mongolia Autonomous Region Approved the Construction Project of Inner Mongolia Autonomous Region Key Laboratory of Castor Breeding and Comprehensive UtilizationInner Mongolia Autonomous Region Castor Industry Collaborative Innovation Center Open Fund Project(MDK2021011,MDK2022014)the Natural Science Foundation of Inner Mongolia Autonomous Region(2021BS03036)Inner Mongolia University for Nationalities Doctoral Research Start-Up Fund(BS672)Castor Industry Technology Innovation Inner Mongolia Autonomous Region Engineering Research Center Open Project(MDK2021004)Inner Mongolia Autonomous Region Castor Industry Collaborative Innovation Center Open Project(MDK2022016).
文摘Castor(Ricinus communis L.)is one of the top 10 oil crops in the world,and inflorescence is a trait that directly affects its yield.Phospholipase C(PLCs)is involved in many plant activities and metabolic processes.To study the functions of PLC family genes in the regulation of the inflorescence development of the female line of Lm-type castor aLmAB2,we determined the expression levels of six PLC family genes of three types of inflorescences of aLmAB2(isofemale line,female line,bisexual line)at different developmental stages.The results showed that the 6 genes of the castor PLC family had relative expression levels at different developmental stages of the three types of inflorescences.The subcellular location of all six protein products was the cell membrane.The six genes were heterologously overexpressed in Arabidopsis thaliana to obtain the T3 generation-resistant Arabidopsis thaliana plants.The results showed that the overexpression of six genes significantly promoted the maturation of Arabidopsis thaliana,the growth of lateral moss,and the development of flowers and pods,but the development of basal leaves and stem leaves of Arabidopsis thaliana was significantly inhibited.According to homology analysis,it is speculated that PLC2,PLC2M,PLC2N,PLC4,PLC4X2,and PLC6 genes have the same regulatory function.
基金National Natural Science Foundation of China(31860071)Research and Reform Practice Project in New Agricultural Sciences of the Ministry of Education in 2020(2020114)+5 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(2021MS03008)Inner Mongolia Autonomous Region Grassland Talents Innovation Team-Castor Molecular Breeding Research Innovative Talent Team Rolling Support Project(2022)Higher Education Teaching Reform Research Project of National Ethnic Affairs Commission in 2021(21082)Fundamental Research Funds in Higher Education Institutions of Inner Mongolia in 2022(237)Autonomous Region Basic Scientific Research Business Fee Project of Inner Mongolia Minzu University in 2023(225,227,244)Inner Mongolia Autonomous Region Castor Industry Collaborative Innovation Center Construction Project(MDK2021011,MDK2022014).
文摘Castor bean(Ricinus communis L.),is one of the top 10 oilseed crops in the world and,therefore,of high economic value.Hybridization is one of the most effective ways to breed new varieties with high yield,high oil content,and better stress resistance.Therefore,prediction of desired traits in castor hybrid offspring is particularly important.In this study,proteomic analysis was performed to identify differentially expressed proteins(DEPs)in seeds between castor hybrid offspring and their female(Lm female line aLmAB2)and male parents(CSR·181).Among the DEPs upregulated in the seeds of hybrid offspring,the majority were related to seed yield and stress tolerance,while some were related to oil synthesis and fatty acid synthesis and metabolism in seeds.In other words,the hybrid offspring showed heterosis for seed yield,stress tolerance,oil synthesis,and fatty acid synthesis and metabolism when compared with their parents.Further,real-time quantitative polymerase chain reaction assays were performed on 12 genes encoding DEPs involved in oil synthesis,pollen abortion,yield,and stress tolerance of seeds.The results showed that the expression levels of the 12 genes were consistent with those of the DEPs.
基金This study was supported by the National Natural Science Foundation of China(31860071)Research and Reform Practice Project in New Agricultural Sciences of the Ministry of Education in 2020(2020114)+7 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(2021MS03008)Inner Mongolia Autonomous Region Grassland Talents Innovation Team—Castor Molecular Breeding Research Innovative Talent Team Rolling Support Project(2022)Higher Education Teaching Reform Research Project of National Ethnic Affairs Commission in 2021(21082)Fundamental Research Funds in Higher Education Institutions of Inner Mongolia in 2022(237)Autonomous Region Basic Scientific Reasearch Business Fee Projest of Inner Mongolia MinZu University in 2023(225,227,244)Inner Mongolia Autonomous Region Castor Industry Collaborative Innovation Center Construction Project(MDK2021011,MDK2022014)Open Fund Project in State Key Laboratory of Castor Breeding of China’s National Ethnic Affairs Commission(MDK2021008)Science and Technology Research Project of Jilin Provincial Department of Education(JJKH20220010KJ).
文摘Castor(Ricinus communis L.)is one of ten oil crops in the world and has complex inflorescence styles.Generally,castor has three inflorescence types:single female inflorescence(SiFF),standard female inflorescence(StFF)and bisexual inflorescence(BF).StFF is realized as a restorer line and as a maintainer line,which was applied to castor hybrid breeding.However,the developmental mechanism of the three inflorescences is not clear.Therefore,we used proteomic techniques to analyze different inflorescence styles.A total of 72 diferentially abundant protein species(DAPs)were detected.These DAPs are primarily involved in carbon and energy metabolism and carbon fixation in the photosynthetic organism pathway.The results showed that DAPs are involved in photosynthesis to control the distribution of imported carbohydrates and exported photoassimilates and thus affect the inflorescence development of castor.In addition,these DAPs are also involved in cysteine and methionine metabolism.Quantitative real-time PCR(qRT-PCR)results demonstrated that the proteomics data collected in this study were reliable.Our findings indicate that the carbon cycle and amino acid metabolism influence the inflorescence development of castor.
基金supported by the National Natural Science Foundation of China (31260336 and 31460353)
文摘An efficient plant regeneration protocol was established for castor bean (Ricinus communis L.), in which 0.3 mg L-1 thidiazuron (TDZ) induced shoot clusters and increased the number of adventitious shoots from hypocotyl tissue. Our results showed that treatment under dark conditions significantly promoted the average number of shoots per explant to 37.36±4.54 (with a 6-d treatment). Modified 1/2 Murashige and Skoog (MS) basal medium supplemented with 440 mg L-1 Ca2+, 0.2 mg L-1 gibberellic acid and 0.1 mg L-1 TDZ significantly increased shoot elongation rates and lowered vitrification rates. Further- more, 1/2 MS media supplemented with 0.2 mg L-11-naphthaleneacetic acid induced a higher rooting rate compared with other culture conditions.
基金supported by the following agencies:Natural Science Foundation of Jilin Province (YDZJ202201ZYTS453)Scientific Research Project of the Jilin Provincial Department of Education (JJKH20220010KJ)+6 种基金supported by Program for Innovative Research Team of Baicheng Normal University,National Natural Science Foundation of China (31860071)Inner Mongolia Autonomous Region Natural Science Foundation Project (2021MS03008)Inner Mongolia Autonomous Region Grassland Talent Innovation Team (2022)2022 Basic Scientific Research Business Cost Project of Universities Directly under the Autonomous Region (237)Open Fund Project of Inner Mongolia Castor Industry Collaborative Innovation Center (MDK2021011,MDK2022014,MDK2022008,MDK2021008,MDK2022009)Fundamental Research Funds for Universities Directly under the Autonomous Region in 2023 of Inner Mongolia University for Nationalities (225,227,243,244)New Agricultural Science Research and Reform Practice Project of the Ministry of Education (2020114)。
文摘Castor,scientifically known as Ricinus communis L.,is among the top ten oil crops globally.It is considered a renewable resource and is commonly referred to as‘green oil’.Castor seeds contain castor oil as their main component,which is predominantly composed of ricinoleic acid.This study utilized RNAi technology to silence the NPC6 gene in NO.2129 castor,resulting in the creation of mutant plants L1 and L2.The weight of 100 dry seed kernels from L1 and L2 exceeds that from NO.2129.The crude fat and ricinoleic acid levels of L1 and L2 were higher than those of NO.2129 at various developmental stages.In the proteomics analysis of 60-day-old castor seeds,a total of 21 differentially expressed proteins were identified,out of which 19 were successfully recognized.Eleven of the differentially expressed proteins identified were legumins,which play a crucial role in nutrient storage within the seed.Silencing the NPC6 gene results in the accumulation of ricinoleic acid in castor seeds.The findings of this study not only enhance our knowledge of NPC6’s role in regulating castor seed oil synthesis but also offer fresh perspectives for investigating oil synthesis and accumulation in other plant species.
基金the following agencies:the Natural Science Foundation of Jilin Province(YDZJ202201ZYTS453)the Scientific Research Project of the Jilin Provincial Department of Education(JJKH20220010KJ)+6 种基金the Program for Innovative Research Team of Baicheng Normal University,the National Natural Science Foundation of China(31860071)the Inner Mongolia Autonomous Region Natural Science Foundation Project(2021MS03008)the Inner Mongolia Autonomous Region Grassland Talent Innovation Team(2022)the 2022 Basic Scientific Research Business Cost Project of Universities Directly under the Autonomous Region(237)the Open Fund Project of Inner Mongolia Castor Industry Collaborative Innovation Center(MDK2021011,MDK2022014,MDK2022008,MDK2021008,MDK2022009,MDK2023003)Fundamental Research Funds for Universities Directly under the Autonomous Region in 2023 of Inner Mongolia University for Nationalities(225,227,243,244)New Agricultural Science Research and Reform Practice Project of the Ministry of Education(2020114)。
文摘The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences.In this study,we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage.In comparison to the MI(complete pistil without willow leaves),290 and 89 differentially expressed genes(DEGs)were found in the SFI(complete pistil with willow leaves)and the BI(monoecious inflorescence),respectively.Among the DEGs,104 and 88 were upregulated in the SFI and BI,respectively,compared to the MI.In addition,186 DEGs and 1 DEG were downregulated in the SFI and BI compared to the MI.Moreover,we conducted GO and KEGG enrichment analyses of the DEGs.In comparison to the MI,the SFI and BI exhibited the enrichment of functional branches in DEGs,specifically in pollen wall assembly,pollen development,and cellular component assembly involved in morphogenesis.In our study,RADL5 showed low expression levels between SFI-vs.-MI types.In addition,we found that the expression of NAC in the SFI differed from that in MI and BI,and some genes related to hormonal signaling changed their expression levels during inflorescence differentiation.These results reveal the genetic mechanism of sex genotypes in castor,which will not only guide researchers in the breeding of castor but also provide a reference for genetic research on other flowering plants.
文摘Introduction: In spite of significant progress towards eliminating mother-to-child transmission (MCT) of HIV by 2025, trends in vertical mother-to-child transmission are still worrying in sub-Saharan African countries. This study aims to take stock of the factors associated with HIV MCT at the level of peripheral health training. Patients and Methods: This was a descriptive and analytical retrospective study, over a five-year period from January 1<sup>st</sup>, 2017 to December 31<sup>st</sup>, 2021. The study population was represented by HIV-positive women and their cared infants in the Parent-Child Transmission Prevention Unit (PCTP) of the Castors Urban Health Center (CUHC). Results: 288 medical records were selected out of a total of 347 HIV-positive mothers followed. HIV seroprevalence in the population of women who received PreNatal Consultation (PNC) during the study period was 8.2%. The HIV MCT rate was 3.7%. HIV+ mothers followed were mostly young (average age of 28), not living in a couple (96.9%), poorly educated (58.7%) and not engaged in income-generating activity (58.4%). They had all received triple therapy and the period of initiation of antiretroviral (ARV) therapy was in the majority of cases during the first trimester. Factors associated with MCT were: primiparity (OR = 18.4 [5.55 - 61.05];Khi<sup>2</sup> = 32.61;p < 0.001), late discovery of infection during large or after childbirth (OR = 0.03 [0.007 - 0.10];Khi<sup>2</sup> = 55.22;p < 0.001), WHO Clinical Stage 2 and 3 (OR = 0.007 [0.001 - 0.03];Khi<sup>2</sup> = 108.73;p < 0.001), CD4 count 200/mm<sup>3</sup> (OR = 14.12 [4.03 - 57.20];Khi<sup>2</sup> = 21.68;p < 0.001), viral load > 1000 copies/mm<sup>3</sup> (OR = 8.85 [2.33 - 43.20];Khi<sup>2</sup> = 10.46;p = 0.001), prolonged labor (OR = 12.33 [3.45 - 57.25];Khi<sup>2</sup> = 18.47;p < 0.001), premature rupture of membranes (OR = 24.03 [6.97 - 96.01];Khi<sup>2</sup> = 40.60;p <sup>2</sup> = 5.96;p = 0.014), and artificial or mixed breastfeeding (OR = 0.01 [0.002 - 0.043];Khi<sup>2</sup> = 97.65;p Conclusion: Taking into account the risk factors for PCTP is essential if we want to achieve the goal of “Zero New Infections in Children by the year 2025”.