Recently the Ablation Casting Technology was invented as a new casting process to improve foundry products quality. In this study, the effects of processing variables on the porosity content, rnicrostructure and feeda...Recently the Ablation Casting Technology was invented as a new casting process to improve foundry products quality. In this study, the effects of processing variables on the porosity content, rnicrostructure and feedability of A356 casting alloy were investigated. Secondary dendrite arm spacing (SDAS) and eutectic silicon mor-phologies were studied to evaluate the influence of Ablation Casting on the rnicrostructure. Casting density was measured in order to identify porosity content and feedability of ablated and non-ablated specimens. In addition, solidification behavior of the samples was investigated by using thermal analysis technique. The cooling curves and the first derivative curves were plotted and compared with each other. Results showed the ablation process could increase solidification rate significantly. In addition, the microstructural evidences revealed that Ablation Casting process results in more fine and homogeneous structure compared to the non-ablated casting. The feedability improved, SDAS reduced to 35% and porosity content decreased to 3.84 vol.% by implementing this process. It concluded the Ablation Casting is an effective process to gain higher quality in aluminum foundry.展开更多
In order to verify the effect of CRP(continuous rheoconversion process) in the preparation of magnesium alloy semisolid billets,AM60 alloy billets were fabricated with CRP,and effects of pouring temperature,slope angl...In order to verify the effect of CRP(continuous rheoconversion process) in the preparation of magnesium alloy semisolid billets,AM60 alloy billets were fabricated with CRP,and effects of pouring temperature,slope angle,and length of the reactor on the microstructure of AM60 alloy were investigated.The results show that the grain size is reduced with the decrease of pouring temperature.A small block/rosette grain is obtained when the pouring temperature is less than 680 °C.Therefore,the available temperature process interval/window has to be required.To change slope angle of reactor(from 30° to 45°) is helpful for formation of the small and block/rosette grains.Meanwhile,the reactor with a length of 500 mm is enough for copious nucleation of primary phase.CRP changes the solidification microstructure of billets by controlling the nucleation and growth of the primary phase in melt.展开更多
Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid p...Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid processing of commercial AM60 alloy were present. The results indicate that the available processing temperature range of AM60 alloy is 170 ℃. The temperature sensitivity of solid fraction decreases with increasing solid fraction or with decreasing temperature above eutectic reaction temperature of AM60 alloy. When the solid fraction φs is 0.4, corresponding processing temperature is 603.8 ℃ and the sensitivity -dφs/dT is 0.0184. The effects of various alloying elements on the solidification behavior and SSM processability of AM60 alloy were calculated with Pandat software.展开更多
文摘Recently the Ablation Casting Technology was invented as a new casting process to improve foundry products quality. In this study, the effects of processing variables on the porosity content, rnicrostructure and feedability of A356 casting alloy were investigated. Secondary dendrite arm spacing (SDAS) and eutectic silicon mor-phologies were studied to evaluate the influence of Ablation Casting on the rnicrostructure. Casting density was measured in order to identify porosity content and feedability of ablated and non-ablated specimens. In addition, solidification behavior of the samples was investigated by using thermal analysis technique. The cooling curves and the first derivative curves were plotted and compared with each other. Results showed the ablation process could increase solidification rate significantly. In addition, the microstructural evidences revealed that Ablation Casting process results in more fine and homogeneous structure compared to the non-ablated casting. The feedability improved, SDAS reduced to 35% and porosity content decreased to 3.84 vol.% by implementing this process. It concluded the Ablation Casting is an effective process to gain higher quality in aluminum foundry.
基金Project(50964010) supported by the National Natural Science Foundation of ChinaProject(090WCGA894) supported by the International S&T Cooperation Program of Gansu Province,China
文摘In order to verify the effect of CRP(continuous rheoconversion process) in the preparation of magnesium alloy semisolid billets,AM60 alloy billets were fabricated with CRP,and effects of pouring temperature,slope angle,and length of the reactor on the microstructure of AM60 alloy were investigated.The results show that the grain size is reduced with the decrease of pouring temperature.A small block/rosette grain is obtained when the pouring temperature is less than 680 °C.Therefore,the available temperature process interval/window has to be required.To change slope angle of reactor(from 30° to 45°) is helpful for formation of the small and block/rosette grains.Meanwhile,the reactor with a length of 500 mm is enough for copious nucleation of primary phase.CRP changes the solidification microstructure of billets by controlling the nucleation and growth of the primary phase in melt.
基金Project(50964010) supported by the National Natural Science Foundation of ChinaProject(090WCGA894) supported by the International S&T Cooperation Program of Gansu Province,China
文摘Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid processing of commercial AM60 alloy were present. The results indicate that the available processing temperature range of AM60 alloy is 170 ℃. The temperature sensitivity of solid fraction decreases with increasing solid fraction or with decreasing temperature above eutectic reaction temperature of AM60 alloy. When the solid fraction φs is 0.4, corresponding processing temperature is 603.8 ℃ and the sensitivity -dφs/dT is 0.0184. The effects of various alloying elements on the solidification behavior and SSM processability of AM60 alloy were calculated with Pandat software.