Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about t...Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.展开更多
Quantification of the nonlinearities between ambient ozone(O3)and the emissions of nitrogen oxides(NOx)and volatile organic compound(VOC)is a prerequisite for an effective O3 control strategy.An Enhanced polynomial fu...Quantification of the nonlinearities between ambient ozone(O3)and the emissions of nitrogen oxides(NOx)and volatile organic compound(VOC)is a prerequisite for an effective O3 control strategy.An Enhanced polynomial functions Response Surface Model(Epf-RSM)with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model(ERSM)system.The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes.Several comparisons between Epf-RSM and pf-ERSM(polynomial functions based ERSM)were performed using out-of-sample validation,together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams.The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to overfitting in the margin areas and high biases in the transition areas.The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results.The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January,April,and October,while more NOx-sensitive in July.展开更多
基金jointly supported by the National Natural Science Foundation of China(31400425,31570437,41301043,31420103917)the National Key Project of Scientific and Technical Supporting Program(2013BAC03B03)+1 种基金the Funding for Talented Young Scientists of IGSNRR(2013RC203)the Social Foundation of Beijing Academy of Social Sciences(154005)
文摘Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.
基金supported by the Science and Technology Program of Guangzhou,China(No.202002030188)the National Key Research and Development Program of China(No.2016YFC0207606)+2 种基金US EPA Emission,Air quality,and Meteorological Modeling Support(No.EP-D-12-044)the National Natural Science Foundation of China(Grant No.21625701),the Fundamental Research Funds for the Central Universities(Nos.D2160320,D6180330,and D2170150)the Natural Science Foundation of Guangdong Province,China(No.2017A030310279).
文摘Quantification of the nonlinearities between ambient ozone(O3)and the emissions of nitrogen oxides(NOx)and volatile organic compound(VOC)is a prerequisite for an effective O3 control strategy.An Enhanced polynomial functions Response Surface Model(Epf-RSM)with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model(ERSM)system.The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes.Several comparisons between Epf-RSM and pf-ERSM(polynomial functions based ERSM)were performed using out-of-sample validation,together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams.The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to overfitting in the margin areas and high biases in the transition areas.The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results.The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January,April,and October,while more NOx-sensitive in July.