AIM:To enhance the radiosensitivity of human colon cancer cells by docetaxel. METHODS: Immunoliposomal docetaxel was prepared by coupling monoclonal antibody against carcinoembryonic antigen to cyanuric chloride at th...AIM:To enhance the radiosensitivity of human colon cancer cells by docetaxel. METHODS: Immunoliposomal docetaxel was prepared by coupling monoclonal antibody against carcinoembryonic antigen to cyanuric chloride at the PEG terminus of liposome. LoVo adenocarcinoma cell line was treated with immunoliposomal docetaxel or/and irradiation. MTT colorimetric assay was used to estimate cytotoxicity of immunoliposomal docetaxel and radiotoxicity. Cell cycle redistribution and apoptosis were determined with flow cytometry. Survivin expression in LoVo cells was verified by immunohistochemistry. D801 morphologic analysis system was used to semi-quantify immunohistochemical staining of survivin. RESULTS: Cytotoxicity was induced by immunoliposomal docetaxel alone in a dose-dependent manner. Immunoliposomal docetaxel yielded a cytotoxicity effect at a low dose of 2 nmol/L. With a single dose irradiation, the relative surviving fraction of LoVo cells showed a dose-dependent response, but there were no significant changes as radiation delivered from 4 to 8 Gy. Compared with liposomal docetaxel or single dose irradiation, strongly radiopotentiating effects of immunoliposomal docetaxel on LoVo cells were observed. A low dose of immunoliposomal docetaxel could yield sufficient radiosensitivity. Immunoliposomal docetaxel were achieved both specificity of the conjugated antibody and drug radiosensitization. Combined with radiation, immunoliposomal docetaxel significantly increased the percentage of G2/M cells and induced apoptosis, but significantly decreased the percentage of cells in G2/G1 and S phase by comparison with liposomal docetaxel. Immunohistochemical analysis showed that the brown stained survivin was mainly in cytoplasm of LoVo cells. Semi-quantitative analysis of the survivin immunostaining showed that the expression of survivin in LoVo cells under irradiation with immunoliposomal docetaxel was significantly decreased. CONCLUSION: Immunoliposomal docetaxel is strongly effective for target radiosensitation in LoVo colon carcinoma cells, and may offer the potential to improve local radiotherapy.展开更多
AIM:A strategy for viral vaccine design is the use of conserved peptides to overcome the problem of sequence diversity. At present it is still unclear whether conserved peptide is safe as a candidate vaccine. We repor...AIM:A strategy for viral vaccine design is the use of conserved peptides to overcome the problem of sequence diversity. At present it is still unclear whether conserved peptide is safe as a candidate vaccine. We reported it here for the first time not only to highlight the biohazard issue and safety importance for viral peptide vaccine, but also to explore the effect of a fully conserved peptide on HBV replication within the carboxyl terminus of HBx.METHODS:We synthesized the fully conserved peptide (CP) with nine residues, FVLGGCRHK. HBV-producJng 2.2.15 cells were treated with or without 3.5μM CP for 36 hours.Quantitative detection of viral DNA was performed by realtime PCR. HBV antigens were determined by enzyme-linked immunoadsorbent assay (ELISA). Quantitative analyses of p53 and Bax proteins were based on immunofluorescence.Flow cytometry was performed to detect cell cycle and apoptosis.RESULTS: Both extracellular and intracellular copies of HBV DNA per ml were significantly increased after incubation with 3.5μM of CP.HBsAg and HBeAg in the cultured medium of CP-treatment cells were as abundant as untreated control ceils. CP influenced negatively the extracellular viral gene products, and 3.5μM CP could significantly inhibit intracellular HBsAg expression. In response to CP, intracellular HBeAg displayed an opposite pattern to that of HBsAg, and 3.5μM CP could efficiently increase the level of intracellular HBeAg.Flow cytometric analyses exhibited no significant changes on cell cycle, apoptosis, p53 and Bax proteins in 2.2,15 cells with or without CP.CONCLUSION: Together with the results generated from the synthetic peptide, we address that the conserved region,a domain of HBx, may be responsible for modulating HBV replication. As conserved peptides from infectious microbes are used as immunogens to elicit immune responses, their latent biological hazard for human beings should be evaluated.展开更多
AIM: To investigate the cellular effects of hybrid polar compound hexamethylene bisacetamide (HMBA) on the growth and apoptosis of human hepatocellular carcinoma cells and to provide the molecular mechanism for potent...AIM: To investigate the cellular effects of hybrid polar compound hexamethylene bisacetamide (HMBA) on the growth and apoptosis of human hepatocellular carcinoma cells and to provide the molecular mechanism for potential application of HMBA in the treatment of liver cancer. METHODS: Effects of HMBA on the growth of human hepatocellular carcinoma SMMC-7721 cells were assayed by MTT chronometry. Apoptosis induced by HMBA was detected by phase-contrast microscopy, flow cytometry, propidium iodide staining and immunocytochemical analysis. RESULTS: The growth of SMMC-7721 cells was significantly inhibited by HMBA, and the growth inhibitory rate was 51.1%, 62.6%, 68.7% and 73.9% respectively after treatment with 5.0, 7.5, 10.0 and 12.5 mmol/L of HMBA. In the cells treated with 10 mmol/L of HMBA for 72 h, the population of cells at sub-G1 phase significantly increased, and the apoptotic bodies and condensed nuclei were detected. Moreover, treatment of SMMC-7721 cells with 10 mmol/L of HMBA down-regulated the expression of Bcl2 anti-apoptotic protein, while slightly up-regulated the level of pro-apoptotic protein Bax. CONCLUSION: Treatment with 10.0 mmol/L of HMBA can significantly inhibit the growth and induce apoptosis of human hepatocellular carcinoma SMMC-7721 cells by decreasing the ratio of Bcl-2 to Bax.展开更多
基金Supported by the Department of Science and Technology of Shandong Province
文摘AIM:To enhance the radiosensitivity of human colon cancer cells by docetaxel. METHODS: Immunoliposomal docetaxel was prepared by coupling monoclonal antibody against carcinoembryonic antigen to cyanuric chloride at the PEG terminus of liposome. LoVo adenocarcinoma cell line was treated with immunoliposomal docetaxel or/and irradiation. MTT colorimetric assay was used to estimate cytotoxicity of immunoliposomal docetaxel and radiotoxicity. Cell cycle redistribution and apoptosis were determined with flow cytometry. Survivin expression in LoVo cells was verified by immunohistochemistry. D801 morphologic analysis system was used to semi-quantify immunohistochemical staining of survivin. RESULTS: Cytotoxicity was induced by immunoliposomal docetaxel alone in a dose-dependent manner. Immunoliposomal docetaxel yielded a cytotoxicity effect at a low dose of 2 nmol/L. With a single dose irradiation, the relative surviving fraction of LoVo cells showed a dose-dependent response, but there were no significant changes as radiation delivered from 4 to 8 Gy. Compared with liposomal docetaxel or single dose irradiation, strongly radiopotentiating effects of immunoliposomal docetaxel on LoVo cells were observed. A low dose of immunoliposomal docetaxel could yield sufficient radiosensitivity. Immunoliposomal docetaxel were achieved both specificity of the conjugated antibody and drug radiosensitization. Combined with radiation, immunoliposomal docetaxel significantly increased the percentage of G2/M cells and induced apoptosis, but significantly decreased the percentage of cells in G2/G1 and S phase by comparison with liposomal docetaxel. Immunohistochemical analysis showed that the brown stained survivin was mainly in cytoplasm of LoVo cells. Semi-quantitative analysis of the survivin immunostaining showed that the expression of survivin in LoVo cells under irradiation with immunoliposomal docetaxel was significantly decreased. CONCLUSION: Immunoliposomal docetaxel is strongly effective for target radiosensitation in LoVo colon carcinoma cells, and may offer the potential to improve local radiotherapy.
文摘AIM:A strategy for viral vaccine design is the use of conserved peptides to overcome the problem of sequence diversity. At present it is still unclear whether conserved peptide is safe as a candidate vaccine. We reported it here for the first time not only to highlight the biohazard issue and safety importance for viral peptide vaccine, but also to explore the effect of a fully conserved peptide on HBV replication within the carboxyl terminus of HBx.METHODS:We synthesized the fully conserved peptide (CP) with nine residues, FVLGGCRHK. HBV-producJng 2.2.15 cells were treated with or without 3.5μM CP for 36 hours.Quantitative detection of viral DNA was performed by realtime PCR. HBV antigens were determined by enzyme-linked immunoadsorbent assay (ELISA). Quantitative analyses of p53 and Bax proteins were based on immunofluorescence.Flow cytometry was performed to detect cell cycle and apoptosis.RESULTS: Both extracellular and intracellular copies of HBV DNA per ml were significantly increased after incubation with 3.5μM of CP.HBsAg and HBeAg in the cultured medium of CP-treatment cells were as abundant as untreated control ceils. CP influenced negatively the extracellular viral gene products, and 3.5μM CP could significantly inhibit intracellular HBsAg expression. In response to CP, intracellular HBeAg displayed an opposite pattern to that of HBsAg, and 3.5μM CP could efficiently increase the level of intracellular HBeAg.Flow cytometric analyses exhibited no significant changes on cell cycle, apoptosis, p53 and Bax proteins in 2.2,15 cells with or without CP.CONCLUSION: Together with the results generated from the synthetic peptide, we address that the conserved region,a domain of HBx, may be responsible for modulating HBV replication. As conserved peptides from infectious microbes are used as immunogens to elicit immune responses, their latent biological hazard for human beings should be evaluated.
基金Supported by the National Natural Science Foundation of China,No.30170463 and Science Research Foundation of Xiamen University and Natural Science Foundation of Fujian Province,No.C0210005
文摘AIM: To investigate the cellular effects of hybrid polar compound hexamethylene bisacetamide (HMBA) on the growth and apoptosis of human hepatocellular carcinoma cells and to provide the molecular mechanism for potential application of HMBA in the treatment of liver cancer. METHODS: Effects of HMBA on the growth of human hepatocellular carcinoma SMMC-7721 cells were assayed by MTT chronometry. Apoptosis induced by HMBA was detected by phase-contrast microscopy, flow cytometry, propidium iodide staining and immunocytochemical analysis. RESULTS: The growth of SMMC-7721 cells was significantly inhibited by HMBA, and the growth inhibitory rate was 51.1%, 62.6%, 68.7% and 73.9% respectively after treatment with 5.0, 7.5, 10.0 and 12.5 mmol/L of HMBA. In the cells treated with 10 mmol/L of HMBA for 72 h, the population of cells at sub-G1 phase significantly increased, and the apoptotic bodies and condensed nuclei were detected. Moreover, treatment of SMMC-7721 cells with 10 mmol/L of HMBA down-regulated the expression of Bcl2 anti-apoptotic protein, while slightly up-regulated the level of pro-apoptotic protein Bax. CONCLUSION: Treatment with 10.0 mmol/L of HMBA can significantly inhibit the growth and induce apoptosis of human hepatocellular carcinoma SMMC-7721 cells by decreasing the ratio of Bcl-2 to Bax.