The objective of this study is to systematically assess the influences of the larynopharyneal anatomical details on airflow and particle behaviors during exhalation by means of image-based modeling. A physiologically ...The objective of this study is to systematically assess the influences of the larynopharyneal anatomical details on airflow and particle behaviors during exhalation by means of image-based modeling. A physiologically realistic nose-throat airway was developed with medical images. Individual airway anatomy such as uvula, pharynx, and larynx were then isolated for examination by progressively simplifying this image-based model geometry. Low Reynolds number (LRN) k-w model and Langrangian tracking model were used to simulate the dynamics of airflow and particle transport for a wide range of exhalation conditions (4-45 L/min) and particle sizes (1 nm-1 μm). Results showed that pharyngeal anatomical details exerted a significant impact on breathing resistance and particle profiles. Abrupt pressure drop resulting from the uvula-related airway obstruction was observed. Even though the total deposition rate in the nasal airway is largely unaffected by the upstream effect, the local deposition patterns vary notably. Results of this study also indicate that the pressure drop appears to be an appropriate parameter to characterize the geometric variations for diffusive depositions. Inclusion of pressure drop (D0.5Q-0.62dp0.07) gives an improved correlation than using the conventional diffusion factor (D0.5Q﹣0.28).展开更多
This study was aimed to assess the effects of effluent from a dumpsite on the physicochemical properties of river Achichum in Bamendakwe in the Bamenda I municipality, Northwest Region of Cameroon. The quality of wate...This study was aimed to assess the effects of effluent from a dumpsite on the physicochemical properties of river Achichum in Bamendakwe in the Bamenda I municipality, Northwest Region of Cameroon. The quality of water used for domestic purposes by the population of this area is mostly appreciated through its organoleptic assessment while no attention is paid to the physicochemical and microbiological properties. Samples (upstream, effluent, and downstream) were collected in the months of September 2022 and February 2023 and examined for organoleptic, physicochemical and bacteriological characteristics using standard methods. The river was contaminated to different extents by nitrates (28.56 - 149.91 mg/L), sulphates (246.89 - 725.42 mg/L) and heavy metals (0.01 - 0.04 mg/L for lead and 0.98 - 2.15 mg/L for aluminum). This contamination could be due to an inflow of the untreated effluent into the river. The river contained a high pollution level of lead and aluminum. Bacteriological investigations revealed that all the analyzed samples from the river contained indicators of faecal pollution such as Enterobacteria spp., E. coli, Streptococcus spp., Salmonella spp., Shigella spp., Staphylococcus spp. and Vibrio spp. Consequently, its utilization exposes consumers to health risks. Thus, water from the river should be treated prior to consumption.展开更多
Little information exists with regard to the relationship between leisure and coping mechanisms among people with physical disabilities.The purpose of this study is to investigate the relationships among leisure,copin...Little information exists with regard to the relationship between leisure and coping mechanisms among people with physical disabilities.The purpose of this study is to investigate the relationships among leisure,coping,and personal growth among people with physical disabilities living in the U.S.Using a purposive sampling strategy,121 participants completed all 3 instruments:assessment of leisure and recreation involvement,coping strategy indicator,and personal growth.Frequency,descriptive analysis,Pearson correlations,and path analysis were utilized to test the relationship between leisure involvement,coping strategies,and personal growth.There were statistically significant direct effects of leisure involvement and avoidance-withdrawal coping strategies on personal growth.The effects of social support seeking coping strategies and problem-solving coping strategies on personal growth were not statistically significant.Results also indicated that leisure involvement had significant direct effects on social support seeking,avoidance-withdrawal,and problem-solving coping strategies.The results demonstrated that leisure engagement was associated with coping strategies and personal growth.In particular,leisure engagement had direct effects on problem-solving coping,social seeking coping,and avoidance/withdrawal coping as well as a direct effect on personal growth.展开更多
正In June of 2011,eight American scholars and twelve Chinese scholars travelled together and were engaged in a two weeks seminar entitled"Religion,Society,and Rule of Law".Zheng Yushuang,a seminar participan...正In June of 2011,eight American scholars and twelve Chinese scholars travelled together and were engaged in a two weeks seminar entitled"Religion,Society,and Rule of Law".Zheng Yushuang,a seminar participant,interviewed three American scholars who focused their study on constitutional law and the judicial process.展开更多
The liver is a sizeable visceral organ whose primary functions involve nutrient metabolism,clearance of toxins,and energy storage.Besides these critical functions,the liver is also a major immunological site.It is pop...The liver is a sizeable visceral organ whose primary functions involve nutrient metabolism,clearance of toxins,and energy storage.Besides these critical functions,the liver is also a major immunological site.It is populated by several specialized resident immune cells,including B cells,T Cells,dendritic cells,and several populations of macrophages.It is also the site for the production and release of acute-phase proteins during inflammation.One reason for garrisoning these immune sentinels and effectors in the liver is its relative location in the circulatory system.The liver is the first significant organ downstream of the intestine,where blood originating from the intestine enters the liver through the portal vein.This organization facilitates the liver’s uptake and processing of nutrient-rich blood directly from the intestinal source.However,the intestine is also home to trillions of microbes,many of which are commensals but also represent potential pathogens.As such,the portal blood supply represents an avenue for systemic infection.To sterilize the portal blood,the liver immune system filters pathogens,which is primarily accomplished by liver macrophages.Here,we will discuss the major populations of macrophages resident in the liver,their location,functions,development,and role in maintaining the liver in the face of injury and infection.展开更多
Tissue-resident type 2 innate lymphoid cells(ILC2s)help orchestrate local inflammation.As early responding cells to danger signals and tissue damage,they produce key cytokines that directly influence the breadth and d...Tissue-resident type 2 innate lymphoid cells(ILC2s)help orchestrate local inflammation.As early responding cells to danger signals and tissue damage,they produce key cytokines that directly influence the breadth and depth of the immune response,including surveillance during tumor development and progression.Like T cells,ILC2s express immune checkpoint molecules on their surface that regulate their effector function.In lung cancer,Ciancaglini et al.展开更多
A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis, cDNA sequences were generated from developing nasturtium (Tropaeolum ma...A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis, cDNA sequences were generated from developing nasturtium (Tropaeolum majus) seeds, which produce large amounts of non-fucosylated xyloglucan as a seed storage polymer. In addition to known xyloglucan biosynthetic genes, a previously uncharacterized putative xyloglucan galactosyltransferase was iden- tified. Analysis of an Arabidopsis thaliana mutant line defective in the corresponding ortholog (AT5G62220) revealed that this gene shows no redundancy with the previously characterized xyloglucan galactosyltransferase, MUR3, but is required for galactosyl-substitution of xyloglucan at a different position. The gene was termed XLT2 for Xyloglucan L-side chain galactosylTransferase position 2. It represents an enzyme in the same subclade of glycosyltransferase family 47 as MUR3. A double mutant defective in both MUR3 (mur3.1) and XLT2 led to an Arabidopsis plant with xyloglucan that consists essentially of only xylosylated glucosyl units, with no further substitutions.展开更多
The concept of using stimuli-responsive hydrogels to actuate fluids in microfluidic devices is particularly attractive,but limitations,in terms of spatial resolution,speed,reliability and integration,have hindered its...The concept of using stimuli-responsive hydrogels to actuate fluids in microfluidic devices is particularly attractive,but limitations,in terms of spatial resolution,speed,reliability and integration,have hindered its development during the past two decades.By patterning and grafting poly(N-isopropylacrylamide)PNIPAM hydrogel films on plane substrates with a 2μm horizontal resolution and closing the system afterward,we have succeeded in unblocking bottlenecks that thermo-sensitive hydrogel technology has been challenged with until now.In this paper,we demonstrate,for the first time with this technology,devices with up to 7800 actuated micro-cages that sequester and release solutes,along with valves actuated individually with closing and opening switching times of 0.6±0.1 and 0.25±0.15 s,respectively.Two applications of this technology are illustrated in the domain of single cell handling and the nuclear acid amplification test(NAAT)for the Human Synaptojanin 1 gene,which is suspected to be involved in several neurodegenerative diseases such as Parkinson’s disease.The performance of the temperature-responsive hydrogels we demonstrate here suggests that in association with their moderate costs,hydrogels may represent an alternative to the actuation or handling techniques currently used in microfluidics,that are,pressure actuated polydimethylsiloxane(PDMS)valves and droplets.展开更多
The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agbl mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms a...The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agbl mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγsubunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the aggl agg2 double mutant is as susceptible as agbl plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agbl-1 mutant and wild-type plants upon inoculation with P cucumerina. This analysis, together with metab- olomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agbl and aggl agg2 mutants. Notably, many mis-reguiated genes in agbl plants were related with cell wall functions, which was also the case in aggl agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agbl and aggl agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spec-tratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.展开更多
Design Safe addresses the challenges of supporting integrative data-driven research in natural hazards engineering.It is an end-to-end data management,communications,and analysis platform where users collect,generate,...Design Safe addresses the challenges of supporting integrative data-driven research in natural hazards engineering.It is an end-to-end data management,communications,and analysis platform where users collect,generate,analyze,curate,and publish large data sets from a variety of sources,including experiments,simulations,field research,and post-disaster reconnaissance.DesignSafe achieves key objectives through:(1)integration with high performance and cloud-computing resources to support the computational needs of the regional risk assessment community;(2)the possibility to curate and publish diverse data structures emphasizing relationships and understandability;and(3)facilitation of real time communications during natural hazards events and disasters for data and information sharing.The resultant services and tools shorten data cycles for resiliency evaluation,risk modeling validation,and forensic studies.This article illustrates salient features of the cyberinfrastructure.It summarizes its design principles,architecture,and functionalities.The focus is on case studies to show the impact of Design Safe on the disaster risk community.The Next Generation Liquefaction project collects and standardizes case histories of earthquake-induced soil liquefaction into a relational database—Design Safe—to permit users to interact with the data.Researchers can correlate in Design Safe building dynamic characteristics based on data from building sensors,with observed damage based on ground motion measurements.Reconnaissance groups upload,curate,and publish wind,seismic,and coastal damage data they gather during field reconnaissance missions,so these datasets are available shortly after a disaster.As a part of the education and community outreach efforts of Design Safe,training materials and collaboration space are also offered to the disaster risk management community.展开更多
文摘The objective of this study is to systematically assess the influences of the larynopharyneal anatomical details on airflow and particle behaviors during exhalation by means of image-based modeling. A physiologically realistic nose-throat airway was developed with medical images. Individual airway anatomy such as uvula, pharynx, and larynx were then isolated for examination by progressively simplifying this image-based model geometry. Low Reynolds number (LRN) k-w model and Langrangian tracking model were used to simulate the dynamics of airflow and particle transport for a wide range of exhalation conditions (4-45 L/min) and particle sizes (1 nm-1 μm). Results showed that pharyngeal anatomical details exerted a significant impact on breathing resistance and particle profiles. Abrupt pressure drop resulting from the uvula-related airway obstruction was observed. Even though the total deposition rate in the nasal airway is largely unaffected by the upstream effect, the local deposition patterns vary notably. Results of this study also indicate that the pressure drop appears to be an appropriate parameter to characterize the geometric variations for diffusive depositions. Inclusion of pressure drop (D0.5Q-0.62dp0.07) gives an improved correlation than using the conventional diffusion factor (D0.5Q﹣0.28).
文摘This study was aimed to assess the effects of effluent from a dumpsite on the physicochemical properties of river Achichum in Bamendakwe in the Bamenda I municipality, Northwest Region of Cameroon. The quality of water used for domestic purposes by the population of this area is mostly appreciated through its organoleptic assessment while no attention is paid to the physicochemical and microbiological properties. Samples (upstream, effluent, and downstream) were collected in the months of September 2022 and February 2023 and examined for organoleptic, physicochemical and bacteriological characteristics using standard methods. The river was contaminated to different extents by nitrates (28.56 - 149.91 mg/L), sulphates (246.89 - 725.42 mg/L) and heavy metals (0.01 - 0.04 mg/L for lead and 0.98 - 2.15 mg/L for aluminum). This contamination could be due to an inflow of the untreated effluent into the river. The river contained a high pollution level of lead and aluminum. Bacteriological investigations revealed that all the analyzed samples from the river contained indicators of faecal pollution such as Enterobacteria spp., E. coli, Streptococcus spp., Salmonella spp., Shigella spp., Staphylococcus spp. and Vibrio spp. Consequently, its utilization exposes consumers to health risks. Thus, water from the river should be treated prior to consumption.
基金supported by Leisure Research Institute at Indiana University.
文摘Little information exists with regard to the relationship between leisure and coping mechanisms among people with physical disabilities.The purpose of this study is to investigate the relationships among leisure,coping,and personal growth among people with physical disabilities living in the U.S.Using a purposive sampling strategy,121 participants completed all 3 instruments:assessment of leisure and recreation involvement,coping strategy indicator,and personal growth.Frequency,descriptive analysis,Pearson correlations,and path analysis were utilized to test the relationship between leisure involvement,coping strategies,and personal growth.There were statistically significant direct effects of leisure involvement and avoidance-withdrawal coping strategies on personal growth.The effects of social support seeking coping strategies and problem-solving coping strategies on personal growth were not statistically significant.Results also indicated that leisure involvement had significant direct effects on social support seeking,avoidance-withdrawal,and problem-solving coping strategies.The results demonstrated that leisure engagement was associated with coping strategies and personal growth.In particular,leisure engagement had direct effects on problem-solving coping,social seeking coping,and avoidance/withdrawal coping as well as a direct effect on personal growth.
文摘正In June of 2011,eight American scholars and twelve Chinese scholars travelled together and were engaged in a two weeks seminar entitled"Religion,Society,and Rule of Law".Zheng Yushuang,a seminar participant,interviewed three American scholars who focused their study on constitutional law and the judicial process.
基金PK is supported by an NSERC Discover grant(RGPIN/07191-2019)the Heart&Stroke Foundation of Canada,CIHRthe Canada Research Chairs Program.
文摘The liver is a sizeable visceral organ whose primary functions involve nutrient metabolism,clearance of toxins,and energy storage.Besides these critical functions,the liver is also a major immunological site.It is populated by several specialized resident immune cells,including B cells,T Cells,dendritic cells,and several populations of macrophages.It is also the site for the production and release of acute-phase proteins during inflammation.One reason for garrisoning these immune sentinels and effectors in the liver is its relative location in the circulatory system.The liver is the first significant organ downstream of the intestine,where blood originating from the intestine enters the liver through the portal vein.This organization facilitates the liver’s uptake and processing of nutrient-rich blood directly from the intestinal source.However,the intestine is also home to trillions of microbes,many of which are commensals but also represent potential pathogens.As such,the portal blood supply represents an avenue for systemic infection.To sterilize the portal blood,the liver immune system filters pathogens,which is primarily accomplished by liver macrophages.Here,we will discuss the major populations of macrophages resident in the liver,their location,functions,development,and role in maintaining the liver in the face of injury and infection.
文摘Tissue-resident type 2 innate lymphoid cells(ILC2s)help orchestrate local inflammation.As early responding cells to danger signals and tissue damage,they produce key cytokines that directly influence the breadth and depth of the immune response,including surveillance during tumor development and progression.Like T cells,ILC2s express immune checkpoint molecules on their surface that regulate their effector function.In lung cancer,Ciancaglini et al.
文摘A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis, cDNA sequences were generated from developing nasturtium (Tropaeolum majus) seeds, which produce large amounts of non-fucosylated xyloglucan as a seed storage polymer. In addition to known xyloglucan biosynthetic genes, a previously uncharacterized putative xyloglucan galactosyltransferase was iden- tified. Analysis of an Arabidopsis thaliana mutant line defective in the corresponding ortholog (AT5G62220) revealed that this gene shows no redundancy with the previously characterized xyloglucan galactosyltransferase, MUR3, but is required for galactosyl-substitution of xyloglucan at a different position. The gene was termed XLT2 for Xyloglucan L-side chain galactosylTransferase position 2. It represents an enzyme in the same subclade of glycosyltransferase family 47 as MUR3. A double mutant defective in both MUR3 (mur3.1) and XLT2 led to an Arabidopsis plant with xyloglucan that consists essentially of only xylosylated glucosyl units, with no further substitutions.
基金We gratefully thank the Institut Pierre-Gilles de Gennes(IPGG)the French National Research Agency(ANR),EQUIPEX and LABEX IPGG(Grant Nos.ANR-10-IDEX-0001-02,ANR-10-LABX-31,PSL*)+1 种基金the China Scholarship Council(CSC),ESPCI,CNRS,PSLthe Ministry of Science and Technology of Thailand(MOST)for their financial support.
文摘The concept of using stimuli-responsive hydrogels to actuate fluids in microfluidic devices is particularly attractive,but limitations,in terms of spatial resolution,speed,reliability and integration,have hindered its development during the past two decades.By patterning and grafting poly(N-isopropylacrylamide)PNIPAM hydrogel films on plane substrates with a 2μm horizontal resolution and closing the system afterward,we have succeeded in unblocking bottlenecks that thermo-sensitive hydrogel technology has been challenged with until now.In this paper,we demonstrate,for the first time with this technology,devices with up to 7800 actuated micro-cages that sequester and release solutes,along with valves actuated individually with closing and opening switching times of 0.6±0.1 and 0.25±0.15 s,respectively.Two applications of this technology are illustrated in the domain of single cell handling and the nuclear acid amplification test(NAAT)for the Human Synaptojanin 1 gene,which is suspected to be involved in several neurodegenerative diseases such as Parkinson’s disease.The performance of the temperature-responsive hydrogels we demonstrate here suggests that in association with their moderate costs,hydrogels may represent an alternative to the actuation or handling techniques currently used in microfluidics,that are,pressure actuated polydimethylsiloxane(PDMS)valves and droplets.
文摘The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agbl mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγsubunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the aggl agg2 double mutant is as susceptible as agbl plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agbl-1 mutant and wild-type plants upon inoculation with P cucumerina. This analysis, together with metab- olomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agbl and aggl agg2 mutants. Notably, many mis-reguiated genes in agbl plants were related with cell wall functions, which was also the case in aggl agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agbl and aggl agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spec-tratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.
基金The National Science Foundation(NSF)financially supports the Design Safe project under grant CMMI-1520817NSF grant ACI1134872 for high performance computing,and grants ACI-1127210 and ACI-1450459 for the development of the Agave API
文摘Design Safe addresses the challenges of supporting integrative data-driven research in natural hazards engineering.It is an end-to-end data management,communications,and analysis platform where users collect,generate,analyze,curate,and publish large data sets from a variety of sources,including experiments,simulations,field research,and post-disaster reconnaissance.DesignSafe achieves key objectives through:(1)integration with high performance and cloud-computing resources to support the computational needs of the regional risk assessment community;(2)the possibility to curate and publish diverse data structures emphasizing relationships and understandability;and(3)facilitation of real time communications during natural hazards events and disasters for data and information sharing.The resultant services and tools shorten data cycles for resiliency evaluation,risk modeling validation,and forensic studies.This article illustrates salient features of the cyberinfrastructure.It summarizes its design principles,architecture,and functionalities.The focus is on case studies to show the impact of Design Safe on the disaster risk community.The Next Generation Liquefaction project collects and standardizes case histories of earthquake-induced soil liquefaction into a relational database—Design Safe—to permit users to interact with the data.Researchers can correlate in Design Safe building dynamic characteristics based on data from building sensors,with observed damage based on ground motion measurements.Reconnaissance groups upload,curate,and publish wind,seismic,and coastal damage data they gather during field reconnaissance missions,so these datasets are available shortly after a disaster.As a part of the education and community outreach efforts of Design Safe,training materials and collaboration space are also offered to the disaster risk management community.