The environments of tropical and subtropical coral reef regions(CRR)differ from each other;however,it is not known if these environmental differences influence coral polyp and skeleton microbiome composition.In this s...The environments of tropical and subtropical coral reef regions(CRR)differ from each other;however,it is not known if these environmental differences influence coral polyp and skeleton microbiome composition.In this study,Coelastrea palauensis corals were collected from tropical and subtropical CRR in the South China Sea,and bacterial,archaeal,and fungal communities in polyps and skeletons were analyzed.Results showed that the microbial diversity and composition of C.palauensis significantly differed between the polyps and skeletons,and between the tropical and subtropical CRR.Regarding bacteria associated with corals,C.palauensis was mainly associated with bacteria closely related to the nitrogen cycle in the subtropical CRR.The relative abundances of Terasakiellaceae and Chlorobium in both coral polyps and skeletons in the subtropical CRR were higher than those in the tropical CRR.In the tropical CRR,C.palauensis was mainly associated with opportunistic pathogenic bacteria.The relative abundances of Tenacibaculum and Vibrio in coral polyps and skeletons in the tropical CRR were higher than those in the subtropical CRR.Regarding archaea associated with corals,polyps and skeletons of C.palauensis in both tropical and subtropical reef areas were dominated by n_Woesearchaeales,and the relative abundance of n_Woesearchaeales in skeletons is significantly higher than that in polyps.In addition,the relative abundances of n_Woesearchaeales in polyps and skeletons in the subtropical CRR were significantly higher than those in the tropical CRR.Regarding fungi associated with corals,Ascomycota was dominant in polyps and skeletons in the subtropical CRR,while Sordariomycetes,Periconia,Cladosporium,and Aspergillus were dominant in polyps and skeletons in the tropical CRR.Besides,the diversity differences of coral-associated microorganisms were related to environmental factors such as nutrients and temperature that may affect the survival of coral-associated microorganisms.These results implied that corals may adjust the composition of microorganisms,conducive the coral holobiont to better adapting the environment.Our research will be beneficial in understanding the differences and adaptations of coral polyp and skeletal microbiome.展开更多
High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b...High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.展开更多
The 4.2 ka event that occurred during the period from 4 500–3 900 a BP was characterized by cold and dry climates and resulted in the collapse of civilizations around the world. The cause of this climatic event, howe...The 4.2 ka event that occurred during the period from 4 500–3 900 a BP was characterized by cold and dry climates and resulted in the collapse of civilizations around the world. The cause of this climatic event, however, has been under debate. We collected four corals(Porites lutea) from Yongxing Island, Xisha Islands, South China Sea, dated them with the U-series method, and measured the annual coral growth rates using X-ray technology. The dating results showed that the coral growth ages were from 4 500–3 900 a BP, which coincide well with the period of the4.2 ka event. We then reconstructed annual sea surface temperature anomaly(SSTA) variations based on the coral growth rates. The growth rate-based SSTA results showed that the interdecadal SSTA from 4 500–3 900 a BP was lower than that during modern times(1961–2008 AD). A spectral analysis showed that the SSTA variations from4 500–3 900 a BP were under the influence of El Nino-Southern Oscillation(ENSO) activities. From 4 500–4 100 a BP, the climate exhibited La Nina-like conditions with weak ENSO intensity and relatively stable and lower SSTA amplitudes. From 4 100–3 900 a BP, the climate underwent a complicated period of ENSO variability and showed alternating El Nino-or La Nina-like conditions at interdecadal time scales and large SSTA amplitudes. We speculate that during the early and middle stages of the 4.2 ka event, the cold climate caused by weak ENSO activities largely weakened social productivity. Then, during the end stages of the 4.2 ka event, the repeated fluctuations in the ENSO intensity caused frequent extreme weather events, resulting in the collapse of civilizations worldwide. Thus, the new evidence obtained from our coral records suggests that the 4.2 ka event as well as the related collapse of civilizations were very likely driven by ENSO variability.展开更多
The seasonal and interannual variabilities of sea surface wind(SSW)in the South China Sea(SCS),especially in coral reef regions such as Nansha Islands,Xisha Islands,Zhongsha Islands and Dongsha Islands were investigat...The seasonal and interannual variabilities of sea surface wind(SSW)in the South China Sea(SCS),especially in coral reef regions such as Nansha Islands,Xisha Islands,Zhongsha Islands and Dongsha Islands were investigated in detail using the Blended Sea Winds dataset(1988-2017).Annual and monthly variations of SSW and sea surface temperature(SST)in the four zones were investigated.Empirical Orthogonal Function(EOF)analysis of wind field was performed to aid in better understanding the different spatial patterns.The results indicate that,as observed in the spatial distribution of the first mode of monthly mean wind speed anomaly,the mag-nitudes in the four island zones are all negative and are similar to each other,showing that the variations of SSW in the four island zones are consistent.In the second mode,the magnitudes in Nansha Islands are opposite to those in the other three zones.The spatial distribution of the third mode reflects regional differences.The maximum annual SSW appears in Dongsha Islands,and the minimum appears in Nansha Islands.The interannual variations of SSW in all island zones are basically concurrent.The island zones with high SSW mostly have low SST,and vice versa.There may be an inverse relationship between SSW and SST in coral reef regions in the SCS.The multiyear monthly variations of SSW in the island zones present a'W'-shaped structural variation.Each island undergoes two months of minimum SSW every year,one during March-May(MAM)and the other during September-November(SON).Both months are in mon-soon transition periods.During the months with low SSW,high SST appears.The SST peaks almost correspond to the SSW troughs.This further indicates that SSW and SST may have opposite changes in coral reef regions.Coral bleaching events often correspond to years of high SST and low SSW.展开更多
Chronic eutrophication and turbidity are critical detrimental factors impacting coral reef ecosystems, adversely affecting their ecological functions, services, benefits, and resilience across multiple spatial scales ...Chronic eutrophication and turbidity are critical detrimental factors impacting coral reef ecosystems, adversely affecting their ecological functions, services, benefits, and resilience across multiple spatial scales and over prolonged periods of time. Inadequate land use practices and lack of appropriate sewage treatment can adversely contribute to increase land-based source pollution (LBSP) impacts in coastal waters and to magnify impacts by sea surface warming trends associated to climate change. Fringing coral reefs off Vega Baja, Puerto Rico, support extensive remnant patches of Elkhorn coral Acropora palmata (Lamarck 1816), which was listed in 2006 as a threatened species under the US Endangered Species Act. Chronic impacts by LBSP have significantly affected local downstream fringing reefs. We characterized the spatial extent of a water quality stress gradient across 12 reefs along the Vega Baja coast through monthly measurements of multiple physico-chemical parameters. Most parameters, particularly PO4, , chlorophyll-a, and the concentration of optical brighteners (OABs), showed a statistically significant increase (PERMANOVA, p < 0.05) in waters close to the main pollution sources, but also in waters adjacent to Cibuco River effluents. Dissolved oxygen also declined and turbidity increased on polluted sites. PO4, , and chlorophyll-a, exceeded recommended concentrations for coral reef ecosystems by factors of 7 - 50 times, 600 - 1240 times, and 17 - 83 times, respectively, depending on the source of the effluents and the distance from sewage pollution sources. Also, water turbidity exceeded 4 - 10 times the recommended value for pristine coral reefs. Coral reefs showed significant decline in close proximity to the polluted zone, showing a significantly different benthic community structure (PERMANOVA, p < 0.0001) dominated by non-reef building taxa (i.e., macroalgae, algal turf) and bare substrate. Percent coral cover and abundance of A. palmata, showed a significant increase with distance. Coral species richness, species diversity index, and the variance in taxonomic distinctness were very low on reef patches adjacent to the polluted zone, increased at a moderate distance with increasing coral cover and co-existence of multiple species, and declined far from the pollution source due to dominance exerted by A. palmata. This study suggests that chronic LBSP resulted in a major decline of one of the largest and most dense remnant stands of A. palmata across the northeastern Caribbean and that nutrient and chlorophyll-a concentrations were unsustainable for coral reefs. This situation requires immediate solution to prevent further damage to these unprecedented resources. It further suggests that chronic LBSP may synergistically magnify sea-surface warming impacts driving corals to an increased state of risk in face of forecasted climate change impacts. Actions to mitigate and adapt to climate change impacts on coral reefs must require a priori controls of LBSP to be effective.展开更多
The chemical diversity of scleractinian corals is closely related to their physiological,ecological,and evolutionary status,and can be influenced by both genetic background and environmental variables.To investigate i...The chemical diversity of scleractinian corals is closely related to their physiological,ecological,and evolutionary status,and can be influenced by both genetic background and environmental variables.To investigate intraspecific variation in the metabolites of these corals,the metabolomes of four species(Pocillopora meandrina,Seriatopora hystrix,Acropora formosa,and Fungia fungites)from the South China Sea were analyzed using untargeted mass spectrometry-based metabolomics.The results showed that a variety of metabolites,including amino acids,peptides,lipids,and other small molecules,were differentially distributed among the four species,leading to their significant separation in principal component analysis and hierarchical clustering plots.The higher content of storage lipids in branching corals(P.meandrina,S.hystrix,and A.formosa)compared to the solitary coral(F.fungites)may be due to the high densities of zooxanthellae in their tissues.The high content of aromatic amino acids in P.meandrina may help the coral protect against ultraviolet damage and promote growth in shallow seawater,while nitrogen-rich compounds may enable S.hystrix to survive in various challenging environments.The metabolites enriched in F.fungites,including amino acids,dipeptides,phospholipids,and other small molecules,may be related to the composition of the coral's mucus and its life-history,such as its ability to move freely and live solitarily.Studying the chemical diversity of scleractinian corals not only provides insight into their environmental adaptation,but also holds potential for the chemotaxonomy of corals and the discovery of novel bioactive natural products.展开更多
Corals studies in Libya are very limited, although they play an important role in the oil exploration as they form excellent reservoirs of coral reef buildups at some oil fields of Sirt Basin (e.g. Intisar “Idris” a...Corals studies in Libya are very limited, although they play an important role in the oil exploration as they form excellent reservoirs of coral reef buildups at some oil fields of Sirt Basin (e.g. Intisar “Idris” and Sahabi Fields). Both fields are produced from Paleocene coral reefs. Meanwhile, in Cyrenaica, corals are of less importance as they are not reported in subsurface tertiary rocks, which probably in the environmental settings of these sediments out of the core of reef as occurred in the surface. Meanwhile, corals are reported from older (Jurassic) subsurface successions as in Concession NC-152, but the cementation diagenesis leads to blocking and destroying the porosity. This study presents the first surface documentation work of eight scleractinian coral species from the exposed sediments in northern Libya, where sixtaxa is reported from Al Jabal al Akhdar region, these include a) an association of huge colonies of Caulastrea sp. and Stylophora sp., from the Middle Eocene Darnah Formation at West Darnah road cut section. Theco-existence of the fastCaulastrea sp. with the slow Stylophora sp. is due to the competition strategy;b) Antiguastrea sp. which is reported from the Oligocene Algal Limestone of Al Bayda Formation at Daryanah-Abyar Roadcut section;c) Cyphastrea sp. andAleveopora sp. from Oligo-Miocene Al Faidiyah Formation at Al Fatayah cement quarry and d) Tarbellastraea sp. From Middle Miocene Benghazi Formation at Benghazi Cement Quarry. In addition, two species Astraeaopora sp. and Actinacis paroraiare reported from the Upper Miocene sediments of formation “M” in As Sahabi area.展开更多
Although reef-building corals are threatened by a number of anthropogenic impacts, certain scleractinian-dinoflagellate (genus Symbiodinium) endosymbioses have proven markedly resilient to environmental change. For in...Although reef-building corals are threatened by a number of anthropogenic impacts, certain scleractinian-dinoflagellate (genus Symbiodinium) endosymbioses have proven markedly resilient to environmental change. For instance, corals from upwelling habitats of Southern Taiwan withstand both short- and long-term increases in temperature, potentially due to their routine exposure to highly variable temperature regimes in situ. To gain a greater understanding of the proteomic basis for such acclimatization to unstable environmental conditions, specimens of the Indo-Pacific reef-building coral Seriatopora hystrix Dana 1846 were sampled during a period of stable temperature conditions from 1) a site characterized by frequent upwelling events in Southern Taiwan and 2) a nearby, non-upwelling control site in the Taiwan Strait. Two-dimensional gel electrophoresis followed by sequencing of differentially concentrated proteins with mass spectrometry unveiled significantly more proteins involved in the cellular stress response in coral hosts of the upwelling site. Although such stress protein signatures could be indicative of sub-lethal levels of cellular stress, especially given the relatively higher sediment loads characteristic of the upwelling site, these proteins may, in contrast, have been constitutively maintained at high levels in preparation for large fluctuations in temperature and other abiotic parameters (e.g., nutrient levels) brought upon by upwelling events.展开更多
Coral reefs have largely declined across multiple spatial scales due to a combination of local-scale anthropogenic impacts, and due to regional-global climate change. This has resulted in a significant loss of entire ...Coral reefs have largely declined across multiple spatial scales due to a combination of local-scale anthropogenic impacts, and due to regional-global climate change. This has resulted in a significant loss of entire coral functional groups, including western Atlantic Staghorn coral (Acropora cervicornis) biotopes, and in a net decline of coral reef ecosystem resilience, ecological functions, services and benefits. Low-tech coral farming has become one of the most important tools to help restore depleted coral reefs across the Wider Caribbean Region. We tested a community-based, low-tech coral farming approach in Culebra Island, Puerto Rico, aimed at adapting to climate change-related impacts through a two-year project to propagate A. cervicornis under two contrasting fishing management conditions, in coastal areas experimenting significant land use changes. Extreme rainfall events and recurrent tropical storms and hurricanes had major site-and method-specific impacts on project outcome, particularly in areas adjacent to deforested lands and subjected to recurrent impacts from land-based source pollution (LBSP) and runoff. Overall, coral survival rate in “A frame” units improved from 73% during 2011-2012 to 81% during 2012-2013. Coral survival rate improved to 97% in horizontal line nurseries (HLN) incorporated during 2012-2013. Percent tissue cover ranged from 86% to 91% in “A frames”, but reached 98% in HLN. Mean coral skeletal extension was 27 cm/y in “A frames” and 40 cm/y in HLN. These growth rates were up to 545% to 857% faster than previous reports from coral farms from other parts of the Caribbean, and up to 438% faster than wild colonies. Branch production and branchiness index (no. harvestable branches > 6 cm) increased by several orders of magnitude in comparison to the original colonies at the beginning of the project. Coral mortality was associated to hurricane physical impacts and sediment-laden runoff impacts associated to extreme rainfall and deforestation of adjacent lands. This raises a challenging question regarding the impact of chronic high sea surface temperature (SST), in combination with recurrent high nutrient pulses, in fostering increased coral growth at the expense of coral physiological conditions which may compromise corals resistance to disturbance. Achieving successful local management of reefs and adjacent lands is vital to maintain the sustained net production in coral farms and of reef structure, and the provision of the important ecosystem services that they provide. These measures are vital for buying time for reefs while global action on climate change is implemented. Adaptive community-based strategies are critical to strengthen institutional management efforts. But government agencies need to transparently build local trust, empower local stakeholders, and foster co-management to be fully successful. Failing to achieve that could make community-based coral reef rehabilitation more challenging, and could potentially drive rapidly declining, transient coral reefs into the slippery slope to slime.展开更多
Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline...Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.展开更多
Ecosystem-based management and community-based participation in governance of Marine Protected Areas (MPAs) have been identified as key elements to improve management success, local stakeholder support, and compliance...Ecosystem-based management and community-based participation in governance of Marine Protected Areas (MPAs) have been identified as key elements to improve management success, local stakeholder support, and compliance with regulations. However, both are often rarely achieved, resulting in poor MPA governance, support and success. A quantitative assessment of the spatio- temporal change (1997-2012) of coral reef fish communities within Arrecifes La Cordillera Natural Reserve in northeastern Puerto Rico was carried out. We also identified community expectations of and support for the designation of a network of small no-take MPAs within the reserve’s boundaries. A holistic approach employing biophysical and socioeconomic methods was used as part of a participatory model to identify priorities for the designation of candidate no-take MPAs. Populations of the most important fishery-targeted species showed a significant temporal decline, particularly in areas subjected to intense recreational activities and spearfishing. Most groupers (Serranidae), snappers (Lutjanidae), barracudas (Sphyraenidae), and some parrotfishes (Scaridae) were nearly absent at most sites. Most individuals belonged to smaller size categories. Herbivores represented the majority of the total fish biomass, suggesting strong fishing impacts on apex predators. Fish declines also occurred after two massive coral bleaching events in 1998 and 2005 that were followed by mass coral mortalities, suggesting combined negative impacts of fishing and climate change. A no-take MPA designation was supported by 80% of the artisanal fishermen, 73% of the concessionaires (i.e., SCUBA diving, charter boats), and 52% of registered vessel operators. Stakeholders agreed that coral reef conditions in the reserve had declined over time, as well as water quality which affected reef health and fisheries. Stakeholders did not recognize climate change and sea surface warming as threats to coral reefs and fisheries. Nonetheless, stakeholder perceptions of candidate no-take MPA sites remarkably matched those identified through fish counts. This study also highlighted the pervasive views held by many stake-holders concerning MPA management and enforcement, and recommended that any no-take MPA designation process considers improving stakeholder participation, understanding of management objectives, actions, and accomplishments, and building stakeholders trust. The integration of ecosystem-based and community-based participatory models may be critical to foster improved support of no-take MPAs and foster a long-term community-based integration to develop and implement mitigation strategies for climate change impacts in novel future scenarios.展开更多
Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions,yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations,associated with...Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions,yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations,associated with fluorescence phenotypes due to GFP-like proteins,remains unclear.In this study,the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis,green and brown.The results reveal that brown G.fascicularis was more susceptible to bleaching than green G.fascicularis when exposed to a higher growth temperature of 32℃.Both phenotypes of G.fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont,Durusdinium trenchii.However,the brown G.fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32℃.The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected,but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G.fascicularis.Under heat stress of 32℃,the gene encoding green fluorescent protein(GFP)-like and chromosome-associated proteins,as well as genes related to oxidative phosphorylation,cell growth and death showed lower transcriptional levels in the brown G.fascicularis compared to the green G.fascicularis.Overall,the results demonstrate that the green form of G.fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria,likely due to higher gene transcription levels and defense ability.展开更多
基金The National Natural Science Foundation of China under contract Nos 42206157,42030502,and 42090041the Natural Science Foundation of Guangxi Province under contract No.2022GXNSFBA035449the Self-Topic Project of Guangxi Laboratory on the Study of Coral Reefs in the South China Sea under contract No.GXLSCRSCS2022103.
文摘The environments of tropical and subtropical coral reef regions(CRR)differ from each other;however,it is not known if these environmental differences influence coral polyp and skeleton microbiome composition.In this study,Coelastrea palauensis corals were collected from tropical and subtropical CRR in the South China Sea,and bacterial,archaeal,and fungal communities in polyps and skeletons were analyzed.Results showed that the microbial diversity and composition of C.palauensis significantly differed between the polyps and skeletons,and between the tropical and subtropical CRR.Regarding bacteria associated with corals,C.palauensis was mainly associated with bacteria closely related to the nitrogen cycle in the subtropical CRR.The relative abundances of Terasakiellaceae and Chlorobium in both coral polyps and skeletons in the subtropical CRR were higher than those in the tropical CRR.In the tropical CRR,C.palauensis was mainly associated with opportunistic pathogenic bacteria.The relative abundances of Tenacibaculum and Vibrio in coral polyps and skeletons in the tropical CRR were higher than those in the subtropical CRR.Regarding archaea associated with corals,polyps and skeletons of C.palauensis in both tropical and subtropical reef areas were dominated by n_Woesearchaeales,and the relative abundance of n_Woesearchaeales in skeletons is significantly higher than that in polyps.In addition,the relative abundances of n_Woesearchaeales in polyps and skeletons in the subtropical CRR were significantly higher than those in the tropical CRR.Regarding fungi associated with corals,Ascomycota was dominant in polyps and skeletons in the subtropical CRR,while Sordariomycetes,Periconia,Cladosporium,and Aspergillus were dominant in polyps and skeletons in the tropical CRR.Besides,the diversity differences of coral-associated microorganisms were related to environmental factors such as nutrients and temperature that may affect the survival of coral-associated microorganisms.These results implied that corals may adjust the composition of microorganisms,conducive the coral holobiont to better adapting the environment.Our research will be beneficial in understanding the differences and adaptations of coral polyp and skeletal microbiome.
基金The National Natural Science Foundation of China under contract Nos 42366002 and 41702182the National Key R&D Program of China under contract No.2017YFA0603300the Guangxi Scientific Projects under contract No.2018GXNSFAA281293。
文摘High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.
基金The National Natural Science Foundation of China under contract No.91428203the Guangxi Scientific Projects under contract Nos AD17129063 and AA17204074the Bagui Fellowship from Guangxi of China
文摘The 4.2 ka event that occurred during the period from 4 500–3 900 a BP was characterized by cold and dry climates and resulted in the collapse of civilizations around the world. The cause of this climatic event, however, has been under debate. We collected four corals(Porites lutea) from Yongxing Island, Xisha Islands, South China Sea, dated them with the U-series method, and measured the annual coral growth rates using X-ray technology. The dating results showed that the coral growth ages were from 4 500–3 900 a BP, which coincide well with the period of the4.2 ka event. We then reconstructed annual sea surface temperature anomaly(SSTA) variations based on the coral growth rates. The growth rate-based SSTA results showed that the interdecadal SSTA from 4 500–3 900 a BP was lower than that during modern times(1961–2008 AD). A spectral analysis showed that the SSTA variations from4 500–3 900 a BP were under the influence of El Nino-Southern Oscillation(ENSO) activities. From 4 500–4 100 a BP, the climate exhibited La Nina-like conditions with weak ENSO intensity and relatively stable and lower SSTA amplitudes. From 4 100–3 900 a BP, the climate underwent a complicated period of ENSO variability and showed alternating El Nino-or La Nina-like conditions at interdecadal time scales and large SSTA amplitudes. We speculate that during the early and middle stages of the 4.2 ka event, the cold climate caused by weak ENSO activities largely weakened social productivity. Then, during the end stages of the 4.2 ka event, the repeated fluctuations in the ENSO intensity caused frequent extreme weather events, resulting in the collapse of civilizations worldwide. Thus, the new evidence obtained from our coral records suggests that the 4.2 ka event as well as the related collapse of civilizations were very likely driven by ENSO variability.
基金Under the auspices of National Natural Science Foundation of China(No.91428203)Guangxi Scientific Projects(No.2018GXNSFAA281100)。
文摘The seasonal and interannual variabilities of sea surface wind(SSW)in the South China Sea(SCS),especially in coral reef regions such as Nansha Islands,Xisha Islands,Zhongsha Islands and Dongsha Islands were investigated in detail using the Blended Sea Winds dataset(1988-2017).Annual and monthly variations of SSW and sea surface temperature(SST)in the four zones were investigated.Empirical Orthogonal Function(EOF)analysis of wind field was performed to aid in better understanding the different spatial patterns.The results indicate that,as observed in the spatial distribution of the first mode of monthly mean wind speed anomaly,the mag-nitudes in the four island zones are all negative and are similar to each other,showing that the variations of SSW in the four island zones are consistent.In the second mode,the magnitudes in Nansha Islands are opposite to those in the other three zones.The spatial distribution of the third mode reflects regional differences.The maximum annual SSW appears in Dongsha Islands,and the minimum appears in Nansha Islands.The interannual variations of SSW in all island zones are basically concurrent.The island zones with high SSW mostly have low SST,and vice versa.There may be an inverse relationship between SSW and SST in coral reef regions in the SCS.The multiyear monthly variations of SSW in the island zones present a'W'-shaped structural variation.Each island undergoes two months of minimum SSW every year,one during March-May(MAM)and the other during September-November(SON).Both months are in mon-soon transition periods.During the months with low SSW,high SST appears.The SST peaks almost correspond to the SSW troughs.This further indicates that SSW and SST may have opposite changes in coral reef regions.Coral bleaching events often correspond to years of high SST and low SSW.
文摘Chronic eutrophication and turbidity are critical detrimental factors impacting coral reef ecosystems, adversely affecting their ecological functions, services, benefits, and resilience across multiple spatial scales and over prolonged periods of time. Inadequate land use practices and lack of appropriate sewage treatment can adversely contribute to increase land-based source pollution (LBSP) impacts in coastal waters and to magnify impacts by sea surface warming trends associated to climate change. Fringing coral reefs off Vega Baja, Puerto Rico, support extensive remnant patches of Elkhorn coral Acropora palmata (Lamarck 1816), which was listed in 2006 as a threatened species under the US Endangered Species Act. Chronic impacts by LBSP have significantly affected local downstream fringing reefs. We characterized the spatial extent of a water quality stress gradient across 12 reefs along the Vega Baja coast through monthly measurements of multiple physico-chemical parameters. Most parameters, particularly PO4, , chlorophyll-a, and the concentration of optical brighteners (OABs), showed a statistically significant increase (PERMANOVA, p < 0.05) in waters close to the main pollution sources, but also in waters adjacent to Cibuco River effluents. Dissolved oxygen also declined and turbidity increased on polluted sites. PO4, , and chlorophyll-a, exceeded recommended concentrations for coral reef ecosystems by factors of 7 - 50 times, 600 - 1240 times, and 17 - 83 times, respectively, depending on the source of the effluents and the distance from sewage pollution sources. Also, water turbidity exceeded 4 - 10 times the recommended value for pristine coral reefs. Coral reefs showed significant decline in close proximity to the polluted zone, showing a significantly different benthic community structure (PERMANOVA, p < 0.0001) dominated by non-reef building taxa (i.e., macroalgae, algal turf) and bare substrate. Percent coral cover and abundance of A. palmata, showed a significant increase with distance. Coral species richness, species diversity index, and the variance in taxonomic distinctness were very low on reef patches adjacent to the polluted zone, increased at a moderate distance with increasing coral cover and co-existence of multiple species, and declined far from the pollution source due to dominance exerted by A. palmata. This study suggests that chronic LBSP resulted in a major decline of one of the largest and most dense remnant stands of A. palmata across the northeastern Caribbean and that nutrient and chlorophyll-a concentrations were unsustainable for coral reefs. This situation requires immediate solution to prevent further damage to these unprecedented resources. It further suggests that chronic LBSP may synergistically magnify sea-surface warming impacts driving corals to an increased state of risk in face of forecasted climate change impacts. Actions to mitigate and adapt to climate change impacts on coral reefs must require a priori controls of LBSP to be effective.
基金The National Natural Science Foundation of China under contract Nos 22264003,42090041 and 42030502the Guangxi Natural Science Fund Project under contract Nos AD17129063,AA17204074 and 2018GXNSFAA281354the Innovation and Entrepreneurship Training Program of College Students from Guangxi University under contract Nos 202210593888 and202210593890。
文摘The chemical diversity of scleractinian corals is closely related to their physiological,ecological,and evolutionary status,and can be influenced by both genetic background and environmental variables.To investigate intraspecific variation in the metabolites of these corals,the metabolomes of four species(Pocillopora meandrina,Seriatopora hystrix,Acropora formosa,and Fungia fungites)from the South China Sea were analyzed using untargeted mass spectrometry-based metabolomics.The results showed that a variety of metabolites,including amino acids,peptides,lipids,and other small molecules,were differentially distributed among the four species,leading to their significant separation in principal component analysis and hierarchical clustering plots.The higher content of storage lipids in branching corals(P.meandrina,S.hystrix,and A.formosa)compared to the solitary coral(F.fungites)may be due to the high densities of zooxanthellae in their tissues.The high content of aromatic amino acids in P.meandrina may help the coral protect against ultraviolet damage and promote growth in shallow seawater,while nitrogen-rich compounds may enable S.hystrix to survive in various challenging environments.The metabolites enriched in F.fungites,including amino acids,dipeptides,phospholipids,and other small molecules,may be related to the composition of the coral's mucus and its life-history,such as its ability to move freely and live solitarily.Studying the chemical diversity of scleractinian corals not only provides insight into their environmental adaptation,but also holds potential for the chemotaxonomy of corals and the discovery of novel bioactive natural products.
文摘Corals studies in Libya are very limited, although they play an important role in the oil exploration as they form excellent reservoirs of coral reef buildups at some oil fields of Sirt Basin (e.g. Intisar “Idris” and Sahabi Fields). Both fields are produced from Paleocene coral reefs. Meanwhile, in Cyrenaica, corals are of less importance as they are not reported in subsurface tertiary rocks, which probably in the environmental settings of these sediments out of the core of reef as occurred in the surface. Meanwhile, corals are reported from older (Jurassic) subsurface successions as in Concession NC-152, but the cementation diagenesis leads to blocking and destroying the porosity. This study presents the first surface documentation work of eight scleractinian coral species from the exposed sediments in northern Libya, where sixtaxa is reported from Al Jabal al Akhdar region, these include a) an association of huge colonies of Caulastrea sp. and Stylophora sp., from the Middle Eocene Darnah Formation at West Darnah road cut section. Theco-existence of the fastCaulastrea sp. with the slow Stylophora sp. is due to the competition strategy;b) Antiguastrea sp. which is reported from the Oligocene Algal Limestone of Al Bayda Formation at Daryanah-Abyar Roadcut section;c) Cyphastrea sp. andAleveopora sp. from Oligo-Miocene Al Faidiyah Formation at Al Fatayah cement quarry and d) Tarbellastraea sp. From Middle Miocene Benghazi Formation at Benghazi Cement Quarry. In addition, two species Astraeaopora sp. and Actinacis paroraiare reported from the Upper Miocene sediments of formation “M” in As Sahabi area.
文摘Although reef-building corals are threatened by a number of anthropogenic impacts, certain scleractinian-dinoflagellate (genus Symbiodinium) endosymbioses have proven markedly resilient to environmental change. For instance, corals from upwelling habitats of Southern Taiwan withstand both short- and long-term increases in temperature, potentially due to their routine exposure to highly variable temperature regimes in situ. To gain a greater understanding of the proteomic basis for such acclimatization to unstable environmental conditions, specimens of the Indo-Pacific reef-building coral Seriatopora hystrix Dana 1846 were sampled during a period of stable temperature conditions from 1) a site characterized by frequent upwelling events in Southern Taiwan and 2) a nearby, non-upwelling control site in the Taiwan Strait. Two-dimensional gel electrophoresis followed by sequencing of differentially concentrated proteins with mass spectrometry unveiled significantly more proteins involved in the cellular stress response in coral hosts of the upwelling site. Although such stress protein signatures could be indicative of sub-lethal levels of cellular stress, especially given the relatively higher sediment loads characteristic of the upwelling site, these proteins may, in contrast, have been constitutively maintained at high levels in preparation for large fluctuations in temperature and other abiotic parameters (e.g., nutrient levels) brought upon by upwelling events.
基金funding provided by the National Oceanic and Atmospheric Administration(NOAA)Restoration Center and The Nature Conservancy to Sociedad Ambiente Marino(MAR-SAM-110110)the National Science Foundation(HRD#0734826)through the Center for Applied Tropical Ecology and Conservation(CATEC),and the University of Puerto Rico’s Central Administration to E.A.Hernández-Delgado.
文摘Coral reefs have largely declined across multiple spatial scales due to a combination of local-scale anthropogenic impacts, and due to regional-global climate change. This has resulted in a significant loss of entire coral functional groups, including western Atlantic Staghorn coral (Acropora cervicornis) biotopes, and in a net decline of coral reef ecosystem resilience, ecological functions, services and benefits. Low-tech coral farming has become one of the most important tools to help restore depleted coral reefs across the Wider Caribbean Region. We tested a community-based, low-tech coral farming approach in Culebra Island, Puerto Rico, aimed at adapting to climate change-related impacts through a two-year project to propagate A. cervicornis under two contrasting fishing management conditions, in coastal areas experimenting significant land use changes. Extreme rainfall events and recurrent tropical storms and hurricanes had major site-and method-specific impacts on project outcome, particularly in areas adjacent to deforested lands and subjected to recurrent impacts from land-based source pollution (LBSP) and runoff. Overall, coral survival rate in “A frame” units improved from 73% during 2011-2012 to 81% during 2012-2013. Coral survival rate improved to 97% in horizontal line nurseries (HLN) incorporated during 2012-2013. Percent tissue cover ranged from 86% to 91% in “A frames”, but reached 98% in HLN. Mean coral skeletal extension was 27 cm/y in “A frames” and 40 cm/y in HLN. These growth rates were up to 545% to 857% faster than previous reports from coral farms from other parts of the Caribbean, and up to 438% faster than wild colonies. Branch production and branchiness index (no. harvestable branches > 6 cm) increased by several orders of magnitude in comparison to the original colonies at the beginning of the project. Coral mortality was associated to hurricane physical impacts and sediment-laden runoff impacts associated to extreme rainfall and deforestation of adjacent lands. This raises a challenging question regarding the impact of chronic high sea surface temperature (SST), in combination with recurrent high nutrient pulses, in fostering increased coral growth at the expense of coral physiological conditions which may compromise corals resistance to disturbance. Achieving successful local management of reefs and adjacent lands is vital to maintain the sustained net production in coral farms and of reef structure, and the provision of the important ecosystem services that they provide. These measures are vital for buying time for reefs while global action on climate change is implemented. Adaptive community-based strategies are critical to strengthen institutional management efforts. But government agencies need to transparently build local trust, empower local stakeholders, and foster co-management to be fully successful. Failing to achieve that could make community-based coral reef rehabilitation more challenging, and could potentially drive rapidly declining, transient coral reefs into the slippery slope to slime.
文摘Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.
文摘Ecosystem-based management and community-based participation in governance of Marine Protected Areas (MPAs) have been identified as key elements to improve management success, local stakeholder support, and compliance with regulations. However, both are often rarely achieved, resulting in poor MPA governance, support and success. A quantitative assessment of the spatio- temporal change (1997-2012) of coral reef fish communities within Arrecifes La Cordillera Natural Reserve in northeastern Puerto Rico was carried out. We also identified community expectations of and support for the designation of a network of small no-take MPAs within the reserve’s boundaries. A holistic approach employing biophysical and socioeconomic methods was used as part of a participatory model to identify priorities for the designation of candidate no-take MPAs. Populations of the most important fishery-targeted species showed a significant temporal decline, particularly in areas subjected to intense recreational activities and spearfishing. Most groupers (Serranidae), snappers (Lutjanidae), barracudas (Sphyraenidae), and some parrotfishes (Scaridae) were nearly absent at most sites. Most individuals belonged to smaller size categories. Herbivores represented the majority of the total fish biomass, suggesting strong fishing impacts on apex predators. Fish declines also occurred after two massive coral bleaching events in 1998 and 2005 that were followed by mass coral mortalities, suggesting combined negative impacts of fishing and climate change. A no-take MPA designation was supported by 80% of the artisanal fishermen, 73% of the concessionaires (i.e., SCUBA diving, charter boats), and 52% of registered vessel operators. Stakeholders agreed that coral reef conditions in the reserve had declined over time, as well as water quality which affected reef health and fisheries. Stakeholders did not recognize climate change and sea surface warming as threats to coral reefs and fisheries. Nonetheless, stakeholder perceptions of candidate no-take MPA sites remarkably matched those identified through fish counts. This study also highlighted the pervasive views held by many stake-holders concerning MPA management and enforcement, and recommended that any no-take MPA designation process considers improving stakeholder participation, understanding of management objectives, actions, and accomplishments, and building stakeholders trust. The integration of ecosystem-based and community-based participatory models may be critical to foster improved support of no-take MPAs and foster a long-term community-based integration to develop and implement mitigation strategies for climate change impacts in novel future scenarios.
基金supported by the Opening Project of Guangxi Laboratory on the Study of Coral Reefs in the South China Sea,Nanning 530004,China(GXLSCRSCS2019003)Natural Science Foundation of Guang Dong(2022A1515010521)+2 种基金the National Natural Science Foundation of China(31971501)The CAS Pioneer Hundred Talents Program(Y8SL031001,Y9YB021001)Science and Technology Program of Guangzhou,China(202002030345).
文摘Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions,yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations,associated with fluorescence phenotypes due to GFP-like proteins,remains unclear.In this study,the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis,green and brown.The results reveal that brown G.fascicularis was more susceptible to bleaching than green G.fascicularis when exposed to a higher growth temperature of 32℃.Both phenotypes of G.fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont,Durusdinium trenchii.However,the brown G.fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32℃.The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected,but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G.fascicularis.Under heat stress of 32℃,the gene encoding green fluorescent protein(GFP)-like and chromosome-associated proteins,as well as genes related to oxidative phosphorylation,cell growth and death showed lower transcriptional levels in the brown G.fascicularis compared to the green G.fascicularis.Overall,the results demonstrate that the green form of G.fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria,likely due to higher gene transcription levels and defense ability.