The evaluation of academic researchers often relies on quantitative metrics,despite their limitations.This paper examines the qualitative assessment approach used by the French National Center for Scientific Research(...The evaluation of academic researchers often relies on quantitative metrics,despite their limitations.This paper examines the qualitative assessment approach used by the French National Center for Scientific Research(CNRS)in Computer Science(Section 6),as presented by a National Committee for Scientific Research(CoNRS)committee president.Rejecting bibliometrics like impact factors,CNRS emphasizes in-depth peer review of research quality,diverse outputs(e.g.,software and datasets),and field-specific considerations.The process,aligned with the San Francisco Declaration on Research Assessment(DORA),faces challenges in scalability and subjectivity,addressed through committee diversity and structured deliberation.This work provides insights for institutions seeking fairer,more holistic research evaluation frameworks.展开更多
Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a...Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.展开更多
Introduction:One of the main events that regulate a cell’s well-being is cell-to-cell communication.This intercellular mechanism of information transfer is often mediated by vesicular trafficking.Mitochondrial-derive...Introduction:One of the main events that regulate a cell’s well-being is cell-to-cell communication.This intercellular mechanism of information transfer is often mediated by vesicular trafficking.Mitochondrial-derived vesicles(MDVs)are an emerging subpopulation of extracellular vesicle(EV)first discovered in 2008 that allow mitochondria to communicate with their surroundings.展开更多
The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore functio...The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).展开更多
With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale prod...With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.展开更多
The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble dif...The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble differentiated neurons;however, they do not exhibit extensive and time-prolonged neuritogenesis, and maintain their duplication capacity in culture. The aim of the present work was to facilitate long-term and more homogeneous neuronal differentiation in motor neuron–like NSC-34 cells. We found that the antimitotic drug cytosine arabinoside promoted robust and persistent neuronal differentiation in the entire cell population. Long and interconnecting neuronal processes with abundant growth cones were homogeneously induced and were durable for up to at least 6 weeks in culture. Moreover, cytosine arabinoside was permissive, dispensable, and mostly irreversible in priming NSC-34 cells for neurite initiation and regeneration after mechanical dislodgement. Finally, the expression of the cell proliferation antigen Ki67 was inhibited by cytosine arabinoside, whereas the expression levels of neuronal growth associated protein 43, vimentin, and motor neuron–specific p75, Islet2, homeobox 9 markers were upregulated, as confirmed by western blot and/or confocal immunofluorescence analysis. Overall, these findings support the use of NSC-34 cells as a motor neuron model for properly investigating neurodegenerative mechanisms and prospectively identifying neuroprotective strategies.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Background:Enzyme fragility remains a major challenge in research and applications.Free enzymes are highly unstable,inactivated by heat,acid,alkali,or organic solvents,and often lose activity even under optimal storag...Background:Enzyme fragility remains a major challenge in research and applications.Free enzymes are highly unstable,inactivated by heat,acid,alkali,or organic solvents,and often lose activity even under optimal storage conditions.Limiting their use in cosmetics.Few commercial products combine acids and enzymes effectively.Objective:To investigate the physicochemical properties,in vitro exfoliation efficacy,and effects on facial skin parameters of a supramolecular acid-enzyme complex(SAE)composed of mandelic acid(MAN),betaine(BET),and composite enzymes(CE;papain and bromelain),thereby establishing a theoretical foundation for cosmetic applications.Methods:The supramolecular structure was characterized using Fourier transform infrared(FTIR)spectroscopy and proton nuclear magnetic resonance(1H NMR)spectroscopy.Dissolution experiments were conducted to compare the solubility of SAE and CE in aqueous solutions.Enzymatic activity assays evaluated the stabilizing effect of supramolecular deep eutectic technology on enzymes.In vitro exfoliation tests assessed acid-enzyme synergy in keratin removal.A 4-week clinical trial evaluated the efficacy of a 2%SAE essence aqueous solution on facial skin parameters.Results:Dissolution experiments confirmed that supramolecular deep eutectic technology significantly improved enzyme solubility.Enzymatic activity tests demonstrated that this technology effectively preserved protease activity,substantially enhancing its practical applicability.Furthermore,in vitro exfoliation efficacy tests revealed that this technology strengthened the synergistic interaction between acids and enzymes and exhibited superior stratum corneum-removing capability of the SAE.In clinical evaluations of efficacy,after 7 days of using the essence containing SAE,the formulation significantly enhanced cheek gloss(+8.08%),while reducing comedones volume(-16.25%).after 28 days,significantly enhanced cheek hydration(+25.0%,SCH),gloss(+15.93%),and smoothness(−7.78%SEsm),while reducing TEWL(−6.86%),sebum(−15.54%),roughness(+16.24%SEr),and pore metrics(volume:−39.98%;count:−30.64%),and decreased comedones(blackheads:−70.33%;Whiteheads:−52.42%;all p<0.05).Conclusion:The supramolecular acid-enzyme complex demonstrates enhanced stability,improved solubility,and superior exfoliation efficacy compared to free enzymes.Clinical results further confirm its multifunctional benefits,including enhancing skin hydration,sebum regulation,barrier repair,pore refinement,and comedolytic effects.This study provides both theoretical and practical foundations for developing stable acid-enzyme combinations in dermatological applications.展开更多
Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformat...Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs.展开更多
The second messengers 3',5'-cyclic adenosine monophosphate(cAMP)and 3',5'-cyclic guanosine monophosphate(cGMP)modulate molecular pathways that are involved in a large variety of cellular processes.In t...The second messengers 3',5'-cyclic adenosine monophosphate(cAMP)and 3',5'-cyclic guanosine monophosphate(cGMP)modulate molecular pathways that are involved in a large variety of cellular processes.In the brain,these processes include neurogenesis,neuronal differentiation,activation and function of microglia,and synaptic plasticity,finally resulting in memory formation.展开更多
Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are t...Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.展开更多
Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset cluste...Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario...To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.展开更多
Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role...Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.展开更多
文摘The evaluation of academic researchers often relies on quantitative metrics,despite their limitations.This paper examines the qualitative assessment approach used by the French National Center for Scientific Research(CNRS)in Computer Science(Section 6),as presented by a National Committee for Scientific Research(CoNRS)committee president.Rejecting bibliometrics like impact factors,CNRS emphasizes in-depth peer review of research quality,diverse outputs(e.g.,software and datasets),and field-specific considerations.The process,aligned with the San Francisco Declaration on Research Assessment(DORA),faces challenges in scalability and subjectivity,addressed through committee diversity and structured deliberation.This work provides insights for institutions seeking fairer,more holistic research evaluation frameworks.
文摘Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.
基金supported by project Emerging Infectious Diseases One Health Basic and Translational Research Actions addressing Unmet Needs on Emerging Infectious Diseases,INF-ACT,Spoke 1 and Spoke 5,Project number PE00000007,CUP B53C20040570005(to PP and DN).
文摘Introduction:One of the main events that regulate a cell’s well-being is cell-to-cell communication.This intercellular mechanism of information transfer is often mediated by vesicular trafficking.Mitochondrial-derived vesicles(MDVs)are an emerging subpopulation of extracellular vesicle(EV)first discovered in 2008 that allow mitochondria to communicate with their surroundings.
基金supported by the University of Padua(to MR)by the project“RIPANE”of the Italian Ministry of Defense(to CM)by Cariparo Foundation(to CM)。
文摘The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).
基金supported by the National Natural Science Foundation of China(52472228,22309202)Natural Science Foundation of Sichuan Province(2023NSFSC1942)the Gusu Leading Talents Program(ZXL2023190)。
文摘With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.
基金supported by FATALSDrug Project [Progetti di Ricerca@CNR SAC.AD002.173.058] from National Research Council,Italy (to CV)。
文摘The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble differentiated neurons;however, they do not exhibit extensive and time-prolonged neuritogenesis, and maintain their duplication capacity in culture. The aim of the present work was to facilitate long-term and more homogeneous neuronal differentiation in motor neuron–like NSC-34 cells. We found that the antimitotic drug cytosine arabinoside promoted robust and persistent neuronal differentiation in the entire cell population. Long and interconnecting neuronal processes with abundant growth cones were homogeneously induced and were durable for up to at least 6 weeks in culture. Moreover, cytosine arabinoside was permissive, dispensable, and mostly irreversible in priming NSC-34 cells for neurite initiation and regeneration after mechanical dislodgement. Finally, the expression of the cell proliferation antigen Ki67 was inhibited by cytosine arabinoside, whereas the expression levels of neuronal growth associated protein 43, vimentin, and motor neuron–specific p75, Islet2, homeobox 9 markers were upregulated, as confirmed by western blot and/or confocal immunofluorescence analysis. Overall, these findings support the use of NSC-34 cells as a motor neuron model for properly investigating neurodegenerative mechanisms and prospectively identifying neuroprotective strategies.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
文摘Background:Enzyme fragility remains a major challenge in research and applications.Free enzymes are highly unstable,inactivated by heat,acid,alkali,or organic solvents,and often lose activity even under optimal storage conditions.Limiting their use in cosmetics.Few commercial products combine acids and enzymes effectively.Objective:To investigate the physicochemical properties,in vitro exfoliation efficacy,and effects on facial skin parameters of a supramolecular acid-enzyme complex(SAE)composed of mandelic acid(MAN),betaine(BET),and composite enzymes(CE;papain and bromelain),thereby establishing a theoretical foundation for cosmetic applications.Methods:The supramolecular structure was characterized using Fourier transform infrared(FTIR)spectroscopy and proton nuclear magnetic resonance(1H NMR)spectroscopy.Dissolution experiments were conducted to compare the solubility of SAE and CE in aqueous solutions.Enzymatic activity assays evaluated the stabilizing effect of supramolecular deep eutectic technology on enzymes.In vitro exfoliation tests assessed acid-enzyme synergy in keratin removal.A 4-week clinical trial evaluated the efficacy of a 2%SAE essence aqueous solution on facial skin parameters.Results:Dissolution experiments confirmed that supramolecular deep eutectic technology significantly improved enzyme solubility.Enzymatic activity tests demonstrated that this technology effectively preserved protease activity,substantially enhancing its practical applicability.Furthermore,in vitro exfoliation efficacy tests revealed that this technology strengthened the synergistic interaction between acids and enzymes and exhibited superior stratum corneum-removing capability of the SAE.In clinical evaluations of efficacy,after 7 days of using the essence containing SAE,the formulation significantly enhanced cheek gloss(+8.08%),while reducing comedones volume(-16.25%).after 28 days,significantly enhanced cheek hydration(+25.0%,SCH),gloss(+15.93%),and smoothness(−7.78%SEsm),while reducing TEWL(−6.86%),sebum(−15.54%),roughness(+16.24%SEr),and pore metrics(volume:−39.98%;count:−30.64%),and decreased comedones(blackheads:−70.33%;Whiteheads:−52.42%;all p<0.05).Conclusion:The supramolecular acid-enzyme complex demonstrates enhanced stability,improved solubility,and superior exfoliation efficacy compared to free enzymes.Clinical results further confirm its multifunctional benefits,including enhancing skin hydration,sebum regulation,barrier repair,pore refinement,and comedolytic effects.This study provides both theoretical and practical foundations for developing stable acid-enzyme combinations in dermatological applications.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52074182,52304406 and U23A20612)the Natural Science Foundation of Shanghai(Grant Nos.22ZR1430700 and 23TS1401900)+1 种基金the National Science and Technology Major Project(No.2017-VII-0008-0102)Neng Ren acknowledges the Startup Fund for Young Faculty at SJTU.
文摘Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs.
文摘The second messengers 3',5'-cyclic adenosine monophosphate(cAMP)and 3',5'-cyclic guanosine monophosphate(cGMP)modulate molecular pathways that are involved in a large variety of cellular processes.In the brain,these processes include neurogenesis,neuronal differentiation,activation and function of microglia,and synaptic plasticity,finally resulting in memory formation.
基金supported by the Natural Science Fund of China(No.51834003,52274073,52022014).
文摘Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.
基金supported by a grant from Telethon Foundation(grant No.GGP20056 to SB)The generation of Pcdh19 floxed mouse model was funded by Cariplo Foundation(grant No.2014-0972 to SB)。
文摘Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LQ24F040007)the National Natural Science Foundation of China(Grant No.U22A2075)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2024-1-21).
文摘To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.
基金partially supported by U.S.National Science Foundation grants EAR1925965 and RISE-2425889support from the European Research Council under the European Union Horizon 2020 research and innovation program(grant agreement no.742335,FIMAGE)。
文摘Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.