The evaluation of academic researchers often relies on quantitative metrics,despite their limitations.This paper examines the qualitative assessment approach used by the French National Center for Scientific Research(...The evaluation of academic researchers often relies on quantitative metrics,despite their limitations.This paper examines the qualitative assessment approach used by the French National Center for Scientific Research(CNRS)in Computer Science(Section 6),as presented by a National Committee for Scientific Research(CoNRS)committee president.Rejecting bibliometrics like impact factors,CNRS emphasizes in-depth peer review of research quality,diverse outputs(e.g.,software and datasets),and field-specific considerations.The process,aligned with the San Francisco Declaration on Research Assessment(DORA),faces challenges in scalability and subjectivity,addressed through committee diversity and structured deliberation.This work provides insights for institutions seeking fairer,more holistic research evaluation frameworks.展开更多
Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a...Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.展开更多
Introduction:One of the main events that regulate a cell’s well-being is cell-to-cell communication.This intercellular mechanism of information transfer is often mediated by vesicular trafficking.Mitochondrial-derive...Introduction:One of the main events that regulate a cell’s well-being is cell-to-cell communication.This intercellular mechanism of information transfer is often mediated by vesicular trafficking.Mitochondrial-derived vesicles(MDVs)are an emerging subpopulation of extracellular vesicle(EV)first discovered in 2008 that allow mitochondria to communicate with their surroundings.展开更多
Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining...Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.展开更多
The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore functio...The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).展开更多
The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble dif...The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble differentiated neurons;however, they do not exhibit extensive and time-prolonged neuritogenesis, and maintain their duplication capacity in culture. The aim of the present work was to facilitate long-term and more homogeneous neuronal differentiation in motor neuron–like NSC-34 cells. We found that the antimitotic drug cytosine arabinoside promoted robust and persistent neuronal differentiation in the entire cell population. Long and interconnecting neuronal processes with abundant growth cones were homogeneously induced and were durable for up to at least 6 weeks in culture. Moreover, cytosine arabinoside was permissive, dispensable, and mostly irreversible in priming NSC-34 cells for neurite initiation and regeneration after mechanical dislodgement. Finally, the expression of the cell proliferation antigen Ki67 was inhibited by cytosine arabinoside, whereas the expression levels of neuronal growth associated protein 43, vimentin, and motor neuron–specific p75, Islet2, homeobox 9 markers were upregulated, as confirmed by western blot and/or confocal immunofluorescence analysis. Overall, these findings support the use of NSC-34 cells as a motor neuron model for properly investigating neurodegenerative mechanisms and prospectively identifying neuroprotective strategies.展开更多
With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale prod...With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.展开更多
A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-d...A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.展开更多
A novel siphon-based divide-and-conquer(SbDaC)policy is presented in this paper for the synthesis of Petri net(PN)based liveness-enforcing supervisors(LES)for flexible manufacturing systems(FMS)prone to deadlocks or l...A novel siphon-based divide-and-conquer(SbDaC)policy is presented in this paper for the synthesis of Petri net(PN)based liveness-enforcing supervisors(LES)for flexible manufacturing systems(FMS)prone to deadlocks or livelocks.The proposed method takes an uncontrolled and bounded PN model(UPNM)of the FMS.Firstly,the reduced PNM(RPNM)is obtained from the UPNM by using PN reduction rules to reduce the computation burden.Then,the set of strict minimal siphons(SMSs)of the RPNM is computed.Next,the complementary set of SMSs is computed from the set of SMSs.By the union of these two sets,the superset of SMSs is computed.Finally,the set of subnets of the RPNM is obtained by applying the PN reduction rules to the superset of SMSs.All these subnets suffer from deadlocks.These subnets are then ordered from the smallest one to the largest one based on a criterion.To enforce liveness on these subnets,a set of control places(CPs)is computed starting from the smallest subnet to the largest one.Once all subnets are live,this process provides the LES,consisting of a set of CPs to be used for the UPNM.The live controlled PN model(CPNM)is constructed by merging the LES with the UPNM.The SbDaC policy is applicable to all classes of PNs related to FMS prone to deadlocks or livelocks.Several FMS examples are considered from the literature to highlight the applicability of the SbDaC policy.In particular,three examples are utilized to emphasize the importance,applicability and effectiveness of the SbDaC policy to realistic FMS with very large state spaces.展开更多
The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the A...The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s.展开更多
In this note, we provide a consistant thin layer theory for power law and Bingham incompressible fluids flowing down an inclined plane under the effect of gravity. The derivation of such equations is based on formal a...In this note, we provide a consistant thin layer theory for power law and Bingham incompressible fluids flowing down an inclined plane under the effect of gravity. The derivation of such equations is based on formal asymptotic expansions of solutions of Cauchy momentum equations in the shallow water scaling and in the neighbourhood of steady solutions so that we can close the average equations on the fluid height h and the total discharge rate q.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
文摘The evaluation of academic researchers often relies on quantitative metrics,despite their limitations.This paper examines the qualitative assessment approach used by the French National Center for Scientific Research(CNRS)in Computer Science(Section 6),as presented by a National Committee for Scientific Research(CoNRS)committee president.Rejecting bibliometrics like impact factors,CNRS emphasizes in-depth peer review of research quality,diverse outputs(e.g.,software and datasets),and field-specific considerations.The process,aligned with the San Francisco Declaration on Research Assessment(DORA),faces challenges in scalability and subjectivity,addressed through committee diversity and structured deliberation.This work provides insights for institutions seeking fairer,more holistic research evaluation frameworks.
文摘Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.
基金supported by project Emerging Infectious Diseases One Health Basic and Translational Research Actions addressing Unmet Needs on Emerging Infectious Diseases,INF-ACT,Spoke 1 and Spoke 5,Project number PE00000007,CUP B53C20040570005(to PP and DN).
文摘Introduction:One of the main events that regulate a cell’s well-being is cell-to-cell communication.This intercellular mechanism of information transfer is often mediated by vesicular trafficking.Mitochondrial-derived vesicles(MDVs)are an emerging subpopulation of extracellular vesicle(EV)first discovered in 2008 that allow mitochondria to communicate with their surroundings.
基金funded on the one hand by Agence de l'Innovation de Défense(AID)grant reference number 2021650044on the other hand by Ecole Centrale de Nantes。
文摘Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.
基金supported by the University of Padua(to MR)by the project“RIPANE”of the Italian Ministry of Defense(to CM)by Cariparo Foundation(to CM)。
文摘The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).
基金supported by FATALSDrug Project [Progetti di Ricerca@CNR SAC.AD002.173.058] from National Research Council,Italy (to CV)。
文摘The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble differentiated neurons;however, they do not exhibit extensive and time-prolonged neuritogenesis, and maintain their duplication capacity in culture. The aim of the present work was to facilitate long-term and more homogeneous neuronal differentiation in motor neuron–like NSC-34 cells. We found that the antimitotic drug cytosine arabinoside promoted robust and persistent neuronal differentiation in the entire cell population. Long and interconnecting neuronal processes with abundant growth cones were homogeneously induced and were durable for up to at least 6 weeks in culture. Moreover, cytosine arabinoside was permissive, dispensable, and mostly irreversible in priming NSC-34 cells for neurite initiation and regeneration after mechanical dislodgement. Finally, the expression of the cell proliferation antigen Ki67 was inhibited by cytosine arabinoside, whereas the expression levels of neuronal growth associated protein 43, vimentin, and motor neuron–specific p75, Islet2, homeobox 9 markers were upregulated, as confirmed by western blot and/or confocal immunofluorescence analysis. Overall, these findings support the use of NSC-34 cells as a motor neuron model for properly investigating neurodegenerative mechanisms and prospectively identifying neuroprotective strategies.
基金supported by the National Natural Science Foundation of China(52472228,22309202)Natural Science Foundation of Sichuan Province(2023NSFSC1942)the Gusu Leading Talents Program(ZXL2023190)。
文摘With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.
基金funded by the National Natural Science Foundation of China(NNSFC)under Grant Numbers 42322408,42188101,and 42441809Additional support was provided by the Climbing Program of the National Space Science Center(NSSC,Grant No.E4PD3005)as well as the Specialized Research Fund for State Key Laboratories of China.
文摘A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.
基金The authors extend their appreciation to King Saud University,Saudi Arabia for funding this work through the Ongoing Research Funding Program(ORF-2025-704),King Saud University,Riyadh,Saudi Arabia.
文摘A novel siphon-based divide-and-conquer(SbDaC)policy is presented in this paper for the synthesis of Petri net(PN)based liveness-enforcing supervisors(LES)for flexible manufacturing systems(FMS)prone to deadlocks or livelocks.The proposed method takes an uncontrolled and bounded PN model(UPNM)of the FMS.Firstly,the reduced PNM(RPNM)is obtained from the UPNM by using PN reduction rules to reduce the computation burden.Then,the set of strict minimal siphons(SMSs)of the RPNM is computed.Next,the complementary set of SMSs is computed from the set of SMSs.By the union of these two sets,the superset of SMSs is computed.Finally,the set of subnets of the RPNM is obtained by applying the PN reduction rules to the superset of SMSs.All these subnets suffer from deadlocks.These subnets are then ordered from the smallest one to the largest one based on a criterion.To enforce liveness on these subnets,a set of control places(CPs)is computed starting from the smallest subnet to the largest one.Once all subnets are live,this process provides the LES,consisting of a set of CPs to be used for the UPNM.The live controlled PN model(CPNM)is constructed by merging the LES with the UPNM.The SbDaC policy is applicable to all classes of PNs related to FMS prone to deadlocks or livelocks.Several FMS examples are considered from the literature to highlight the applicability of the SbDaC policy.In particular,three examples are utilized to emphasize the importance,applicability and effectiveness of the SbDaC policy to realistic FMS with very large state spaces.
文摘The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s.
文摘In this note, we provide a consistant thin layer theory for power law and Bingham incompressible fluids flowing down an inclined plane under the effect of gravity. The derivation of such equations is based on formal asymptotic expansions of solutions of Cauchy momentum equations in the shallow water scaling and in the neighbourhood of steady solutions so that we can close the average equations on the fluid height h and the total discharge rate q.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.