The lunar magma ocean hypothesis suggests that the primordial KREEP(an acronym of potassium(K),rare earth element(REE),and phosphorus(P))was the final product of fractional crystallization.However,the primordial KREEP...The lunar magma ocean hypothesis suggests that the primordial KREEP(an acronym of potassium(K),rare earth element(REE),and phosphorus(P))was the final product of fractional crystallization.However,the primordial KREEP(a.k.a.urKREEP)has never been identified in previous lunar samples or meteorites.The Moon is the focus of many countries’and agencies’space exploration plans,and with the advancement of technology,crewed missions have been proposed.We propose two candidate landing sites,located respectively in the northwest(9.5°W,0.9°S)and southeast(11.1°W,6.2°S)of Lalande crater(8.6°W,4.5°S),for future crewed missions,with the primary goal of sampling the speculated urKREEP.Both sites are situated on the Th-(a critical marker of KREEP)and silica-rich Lalande ejecta in the Mare Insularum and Mare Nubium,respectively.Their geolocations at the low latitude on the lunar nearside,the flat surface,and the low rock abundance suggest the sites are safe for landing and meet the needs of real-time Earth-Moon communication.The astronauts could perform many extravehicular activities,such as collecting KREEP-rich samples,screening clast samples,and drilling regolith cores,to gather a variety of samples,such as Lalande ejecta,basalts,Copernicus ejecta,and regolith.The returned samples are valuable to explore the speculated urKREEP,to reveal the relationship between heat-producing elements and volcanism,to refine the lunar cratering chronology function,and to investigate volatiles in the regolith.展开更多
Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from...Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from 17 space-and ground-based telescopes/instruments,covering wavelengths from NIR/optical to X-ray and GeV,and spanning from the prompt emission to the afterglow phase triggered by Swift and Fermi.The early afterglow observations were carried out by SVOM/C-GFT,and spectroscopic observations of the afterglow by GTC,VLT,and TNG determined the redshift of the burst(z=0.659)later.A comprehensive analysis of the prompt emission spectrum observed by Swift-BAT and Fermi-GBM/LAT reveals a rare and significant high-energy cutoff at 76 MeV.Assuming this cutoff is due toγγabsorption allows us to place an upper limit on the initial Lorentz factor,Γ_(0)<245.The optical/NIR and GeV afterglow light curves can be described by the standard external shock model,with early-time emission dominated by a reverse shock(RS)and a subsequent transition to forward shock(FS)emission.Our afterglow modeling yields a consistent estimate of the initial Lorentz factor(Γ_(0)∼234).Furthermore,the RS-to-FS magnetic field ratio(R 302B)indicates that the RS region is significantly more magnetized than the FS region.An isotropic-equivalent kinetic energy of E_(k,iso)=5.25×10^(54) erg is derived,and the correspondingγ-ray radiation efficiency is estimated to beη_(γ)=3.1%.On the other hand,the standard afterglow model cannot reproduce the X-ray light curve of GRB 240825A,calling for improved models to characterize all multiwavelength data.展开更多
Wildfire events are increasing globally which may be partly associated with climate change,resulting in significant adverse impacts on local,regional air quality and global climate.In September 2020,a small wildfire(b...Wildfire events are increasing globally which may be partly associated with climate change,resulting in significant adverse impacts on local,regional air quality and global climate.In September 2020,a small wildfire(burned area:36.3 ha)event occurred in Souesmes(Loiret-Cher,Sologne,France),and its plume spread out over 200 km on the following day as observed by the MODIS satellite.Based on measurements at a suburban site(~50 km northwest of the fire location)in Orléans and backward trajectory analysis,young wildfire plumes were characterized.Significant increases in gaseous pollutants(CO,CH_(4),N_(2)O,VOCs,etc.)and particles(including black carbon)were found within the wildfire plumes,leading to a reduced air quality.Emission factors,defined as EF(X)=ΔX/ΔCO(where,X represents the target species),of various trace gases and black carbon within the young wildfire plumes were determined accordingly and compared with previous studies.Changes in the ambient ions(such as ammonium,sulfate,nitrate,chloride,and nitrite in the particle-and gasphase)and aerosol properties(e.g.,aerosol water content,aerosol p H)were also quantified and discussed.Moreover,we estimated the total carbon and climate-related species(e.g.,CO_(2),CH_(4),N_(2)O,and BC)emissions and compared them with fire emission inventories.Current biomass burning emission inventories have uncertainties in estimating small fire burned areas and emissions.For instance,we found that the Global Fire Assimilation System(GFAS)may underestimate emissions(e.g.,CO)of this small wildfire while other inventories(GFED and FINN)showed significant overestimation.Considering that it is the first time to record wildfire plumes in this region,related atmospheric implications are presented and discussed.展开更多
The two vegetation transfer parameters ofτ(Vegetation Optical Depth,VOD)andω(Omega)could vary significantly across microwave channels in terms of frequencies,polarizations,and incidence angles,and their channel-depe...The two vegetation transfer parameters ofτ(Vegetation Optical Depth,VOD)andω(Omega)could vary significantly across microwave channels in terms of frequencies,polarizations,and incidence angles,and their channel-dependent characteristics have not yet been fully investigated.In this study,we investigate the channel dependence of vegetation effects on microwave emissions from soils using a higher-order vegetation radiative transfer model of Tor Vergata.Corn was selected as the subject of investigation,and a corn growth model was developed utilizing field data collected from the multifrequency and multi-angular ground-based microwave radiation experiment from the Soil Moisture Experiment in the Luan River(SMELR).Upon compilation of the simulation dataset of microwave emissions of the corn field,the effective scattering albedo across different channels were calculated using the Tor Vergata model.Results show that vertical polarization of the vegetation optical depth is more affected by incidence angle changes,while horizontal polarization exhibits lower variations in vegetation optical depth due to incidence angle adjustments.The channel dependence of vegetation optical depth can be described as the polarization dependence parameter(CP)and the frequency dependence parameter(Cf).These two parameters enable the calculation of vegetation optical depth at any channel under three adjacent frequencies(L-band,C-band and X-band).The effective scattering albedo of vegetation does not vary significantly with vegetation height or angle.It primarily depends on frequency and polarization,showing an overall increasing trend with increasing frequency.The effective scattering albedo with vertical polarization is slightly higher than that with horizontal polarization at higher frequencies,while both are lower in the L-band.This investigation is helpful for understanding the vegetation effects on microwave emissions from soils,ultimately advancing the accuracy of large-scale soil moisture retrieval in vegetated areas.展开更多
The Amazon basin has experienced an extreme drought that started in the austral summer of 2022-23 and extends into 2024. This drought started earlier than other previous droughts. Although some rain fell during the au...The Amazon basin has experienced an extreme drought that started in the austral summer of 2022-23 and extends into 2024. This drought started earlier than other previous droughts. Although some rain fell during the austral summer, totals remained below average. Higher temperatures during austral winter and spring 2023, which affected most of Central South America, then aggravated drought conditions. This coincided with an intense El Niño and abnormally warm tropical North Atlantic Ocean temperatures since mid-2023. Decreased rainfall across the Amazon basin, negative anomalies in evapotranspiration (derived from latent heat) and soil moisture indicators, as well as increased temperatures during the dry-to-wet transition season, September-October-November (SON) 2023, combined to delay the onset of the wet season in the hydrological year 2023-24 by nearly two months and caused it to be uncharacteristically weak. SON 2023 registered a precipitation deficit of the order of 50 to 100 mm/month, and temperatures +3˚C higher than usual in Amazonia, leading to reduced evapotranspiration and soil moisture indicators. These processes, in turn, determined an exceptionally late onset and a lengthening of the dry season, affecting the 2023-2024 hydrological year. These changes were aggravated by a heat wave from June to December 2023. Drought-heat compound events and their consequences are the most critical natural threats to society. River levels reached record lows, or dried up completely, affecting Amazonian ecosystems. Increased risk of wildfires is another concern exacerbated by these conditions.展开更多
本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱...本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262km3,这相当于全球海平面上升3.2±0.7mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.展开更多
The evolution of terminology in a given field of science and technology is a good indicator of the context in which inventions originated and how concepts have evolved.This is the case of photogrammetry,remote sensing...The evolution of terminology in a given field of science and technology is a good indicator of the context in which inventions originated and how concepts have evolved.This is the case of photogrammetry,remote sensing and related methods,whose terminology evolved,first under the influence of the early inventors Laussedat and Meydenbauer,in French and German,respectively,and then in English and other languages as an international professional community developed.The development of space remote sensing and analytical photogrammetry led to the modification of old concepts and the renewal of terminology,and more recently,the advent of digital photography has blurred the boundaries between different fields and the meaning of the terms.This article proposes an analysis of the evolution of technical terms through the Google Ngram Viewer tool,which allows the visualization of the occurrence of terms in documents accessible on the web.Despite its biases,this tool allows an interpretation of the evolution of the terminology over a long period of time,as well as a comparison of the evolution observed in the different languages.In particular,it makes it possible to highlight the periods when these methods were very popular,as well as a recent decline in the use of classical terms such as photogrammetry and remote sensing in favor of a new vocabulary,due to the blurring of boundaries between disciplines and to the emergence of new solutions related to UAVs,computer vision,etc.,which have renewed the potential of classical methods.展开更多
In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ...In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that(1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and(2), this process involves agglomerates with 100 μm to 1 mm size.展开更多
Protection of silver mirror stacks from environmental degradation before launching is crucial for space applications.Hereby,we report a comparative study of the advanced protection of silver mirror stacks for space te...Protection of silver mirror stacks from environmental degradation before launching is crucial for space applications.Hereby,we report a comparative study of the advanced protection of silver mirror stacks for space telescopes provided by SiO_(2)and Al_(2)O_(3)coatings in conditions of accelerated aging by sulfida-tion.The model silver stack samples were deposited by cathodic magnetron sputtering on a reference silica substrate for optical applications and a surface-pretreated SiC substrate.Accelerated aging was per-formed in dry and more severe wet conditions.Optical micrographic observations,surface and interface analysis by Time-of Flight Secondary Ion Mass Spectrometry(ToF-SIMS)and reflectivity measurements were combined to comparatively study the effects of degradation.The results show a lower kinetics of degradation by accelerated aging of the stacks protected by the alumina coating in comparable test conditions.展开更多
In this comment on the article“Locating the source field lines of Jovian decametric radio emissions”by Wang YM et al.,2020,we discuss the assumptions used by the authors to compute the beaming angle of Jupiter’s de...In this comment on the article“Locating the source field lines of Jovian decametric radio emissions”by Wang YM et al.,2020,we discuss the assumptions used by the authors to compute the beaming angle of Jupiter’s decametric emissions induced by the moon Io.Their method,relying on multi-point radio observations,was applied to a single event observed on 14th March 2014 by Wind and both STEREO A/B spacecraft from~5 to~16 MHz.They have erroneously identified the emission as a northern(Io-B type)instead of a southern one(Io-D type).We encourage the authors to update their results with the correct hemisphere of origin and to test their method on a larger sample of Jupiter-Io emissions.展开更多
Lake Issyk-Kul is the seventh deepest lake in the world situated inCentral Asiain theTien-ShanMountainsat the elevation of 1607 m above sea level. This area belongs toKyrgyzstan. From 1927 to 1997 the water level decr...Lake Issyk-Kul is the seventh deepest lake in the world situated inCentral Asiain theTien-ShanMountainsat the elevation of 1607 m above sea level. This area belongs toKyrgyzstan. From 1927 to 1997 the water level decreased by 3.4 m, and increased by 0.93 m from 1997 to 2011. The article analyzes the impact of the global warming on the Lake Issyk-Kul thermal regime and the components of its water balance: river discharge, precipitation, evaporation and lake level variations. It shows that the global warming has entailed the increase of the Lake Issyk-Kul water temperature down to the maximum depths, and river discharge increase due to the glaciers melting and the evaporation from the lake surface. The air temperature increase of 1 ℃ results in river discharge increas and lake level rise of 44 mm/year and surface evaporation increase of 88 mm/year. TheLakeIssyk-Kullevel increase after 1997, which takes place in the situation of global warming, was caused by the activation of the West air masses transport and increase of precipitation in autumn.展开更多
The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(>28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through stro...The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(>28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.展开更多
Energy demand is increasing while we are facing a depletion of fossils fuels, the main source of energy production in the world. These last years, photovoltaic (PV) system technologies are growing rapidly among altern...Energy demand is increasing while we are facing a depletion of fossils fuels, the main source of energy production in the world. These last years, photovoltaic (PV) system technologies are growing rapidly among alternative sources of energy to contribute to mitigation of climate change. However, PV system efficiency researches operating under West African weather conditions are nascent. The first objective of this study is to investigate the sensitivity of common monocrystalline PV efficiency to local meteorological parameters (temperature, humidity, solar radiation) in two contrasted cities over West Africa: Niamey (Niger) in a Sahelian arid area and Abidjan (Cote d’Ivoire) in atropical humid area. The second objective is to quantify the effect of dust accumulation on PV efficiency in Niamey (Niger). The preliminary results show that PV efficiency is more sensitive to high temperature change especially under Niamey climate conditions (warmer than Abidjan) where high ambient temperatures above 33°C lead to an important decrease of PV efficiency. Increase of relative humidity induces a decrease of PV efficiency in both areas (Niamey and Abidjan). A power loss up to 12.46% is observed in Niamey after 21 days of dust accumulation.展开更多
Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic eff...Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic effects of dry immersion. We assessed if the principal changes were restored within 24 h of recovery, and determined which changes were mainly associated with immersion-induced orthostatic intolerance. Five-day dry immersion without countermeasures, and with ad libitum water intake, standardized diet and a permitted short daily rise was performed in a relatively large sample for this experiment type (14 healthy young men). Reduction of total body water derived mostly from extracellular compartment, and stabilized rapidly at the new operating point. Decrease in plasma volume was estimated at 20% - 25%. Five-day immersion was sufficient to impair metabolism with a decrease in glucose tolerance and hypercholesterolemia, but was not associated with pronounced autonomic changes. Five-day immersion induced marked cardiovascular impairment. Immediately after immersion, over half of the subjects were unable to accomplish the 20-min 70° tilt;during tilt, heart rate and total peripheral resistance were increased, and stroke volume was decreased. However, 24 hours of normal physical activity appeared sufficient to reverse orthostatic tolerance and all signs of cardiovascular impairment, and to restitute plasma volume and extracellular fluid volume. Similarly, metabolic impairment was restored. In our study, the major factor responsible for orthostatic intolerance appeared to be hypovolemia. The absence of pronounced autonomic dysfunction might be explained by relatively short duration of dry immersion and daily short-time orthostatic stimulation.展开更多
The hormone defined serum free conditioned medium (SFCM) of human nasopharyngeal carcinoma epithelioid cell line (CNE1) was assayed by both the 3H-thymidine incorporation test and the soft agar test. It was found that...The hormone defined serum free conditioned medium (SFCM) of human nasopharyngeal carcinoma epithelioid cell line (CNE1) was assayed by both the 3H-thymidine incorporation test and the soft agar test. It was found that the SFCM stimulated the growth of long-term serum-free cultured CNE4 cells in ac-cordence with the fact that the growth rate of long-term serum-free cultured CNE1 cells was directly proportional to the plating density. Alternatively 5% SFCM inhibited the growth of short-term serum-free cultured CNE4 cells by 51% in which the indicator cell remained the responsiveness state of growing in the serum-supplemented medium to the effector of interest. Furthermore, SFCM resulted in the inhibition of anchorage-independent growth of CNE4 cells and A431 cells. Also in soft agar test. SFCM reduced the colony formation of NRK(?),9F cells in the presence of EGF or EGF plus TGF-β. These finding suggested that CNE4 secreted autocrine growth stimulating factor(s) and growth inhibiting factor(s) in the serum-free medium, the latter strongly reverse malignant phenotypes of CNE4 and A431 cells in serum-supplemented surrounding.展开更多
This study was carried out under the aegis of the program Surface Water and Ocean Topography (SWOT) associated with the National Center of Space Studies (CNES). The future SWOT mission will offer new opportunities to ...This study was carried out under the aegis of the program Surface Water and Ocean Topography (SWOT) associated with the National Center of Space Studies (CNES). The future SWOT mission will offer new opportunities to survey the hydrodynamic in the rivers because it will provide data on the water level/ discharges with a high spatial resolution (oceans: 1 km, rivers: 100 m of width) and with a global cover. However, it is important to estimate the capacity of SWOT to reproduce the hydrodynamic phenomena in the estuaries and the temporal and the spatial variability of this dynamic. The aim of this paper is 1) to estimate the capacity of SWOT to reproduce the hydrological variability of watersheds, and 2) to validate the use of these data for other zone without hydrometric station. Based on discharge measurements and simulated Surface Water and Ocean Topography (SWOT) data, we have investigated the hydrological variability of the main French rivers (Seine, Loire, Garonne and Rh?ne) by applying a series of statistical analyses to the discharge time series. A frequency analysis has been also used using a technique of wavelet. Results have shown a similar hydrological variability of the four watersheds. Three different periods of hydrologic variability has been identified: before 1970, between 1970 and 1990, and after 1990. Using these analyses, simulated SWOT samples and discharges were compared during the three studied periods. Simulated SWOT data, obtained by a synthetic sampling of river discharges basing on the number of measurements per repeat orbit, reproduce the hydrological variability of rivers. Such reproduction seems to be independent in the number of SWOT passages (from two to four), except for the minimum and maximum annual discharges where number of overpass seems to have an influence. These results were validated by coherence wavelet which underlines coherence higher than 90% between simulated SWOT data and in-situ discharges. Nevertheless, good correlation was not observed for the minimum and the maximum annual discharge with an underestimation for SWOT maximum annual and an overestimation of the minimum annual SWOT ones. Moreover, best identification of minimum, mean and maximum annual discharge depends on SWOT overpasses.展开更多
An alternative presentation of a relativistic theory of gravitation, equivalent to general relativity, is given. It is based upon the restriction of the Lorentz invariance of special relativity from a global invarianc...An alternative presentation of a relativistic theory of gravitation, equivalent to general relativity, is given. It is based upon the restriction of the Lorentz invariance of special relativity from a global invariance to a local one. The resulting expressions appear rather simple as we consider the transformations of a local set of pseudo-orthonormal coordinates and not the geometry of a 4-dimension hyper-surface described by a set of curvilinear coordinates. This is the major difference with the usual presentations of general relativity but that difference is purely formal. The usual approach is most adequate for describing the universe on a large scale in astrophysics and cosmology. The approach of this paper, derived from particle physics and focused on local reference frames, underlines the formal similarity between gravitation and the other interactions inasmuch as they are associated to the restriction of gauge symmetries from a global invariance to a local one.展开更多
The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite an...The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite and ground data collected on bare soil surfaces during the Multispectral Crop Monitoring experimental campaign of the CESBIO laboratory in 2010 over an agricultural region in southwestern France. The dataset covers a wide range of soil (viewing top soil moisture, surface roughness and texture) and satellite (at different frequencies: X-, C- and L-bands, and different incidence angles: 24.3° to 53.3°) configurations. The proposed methodology consists in identifying and correcting the residues of the models, depending on the surface properties (roughness, moisture, texture) and/or sensor characteristics (frequency, incidence angle). Finally, one model has been retained for each frequency domain. Results show that the enhancements of the models significantly increase the simulation performances. The coefficient of correlation increases of 23% in mean and the simulation errors (RMSE) are reduced to below 2 dB (at the X and C-bands) and to 1 dB at the L-band, compared to the initial models. At the X- and C-bands, the best performances of the modified models are provided by Dubois, whereas Oh 2004 is more suitable for the L-band (r is equal to 0.69, 0.65 and 0.85). Moreover, the modified models of Oh 1992 and 2004 and Dubois, developed in this study, offer a wider domain of validity than the initial formalism and increase the capabilities of retrieving the backscattering signal in view of applications of such approaches to stronglycontrasted agricultural surface states.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0503104)the National Natural Science Foundation of China(Grant Nos.42241111,62227901,and 42441826)+1 种基金the Macao Young Scholars Program(Grant No.AM201902)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-202401).
文摘The lunar magma ocean hypothesis suggests that the primordial KREEP(an acronym of potassium(K),rare earth element(REE),and phosphorus(P))was the final product of fractional crystallization.However,the primordial KREEP(a.k.a.urKREEP)has never been identified in previous lunar samples or meteorites.The Moon is the focus of many countries’and agencies’space exploration plans,and with the advancement of technology,crewed missions have been proposed.We propose two candidate landing sites,located respectively in the northwest(9.5°W,0.9°S)and southeast(11.1°W,6.2°S)of Lalande crater(8.6°W,4.5°S),for future crewed missions,with the primary goal of sampling the speculated urKREEP.Both sites are situated on the Th-(a critical marker of KREEP)and silica-rich Lalande ejecta in the Mare Insularum and Mare Nubium,respectively.Their geolocations at the low latitude on the lunar nearside,the flat surface,and the low rock abundance suggest the sites are safe for landing and meet the needs of real-time Earth-Moon communication.The astronauts could perform many extravehicular activities,such as collecting KREEP-rich samples,screening clast samples,and drilling regolith cores,to gather a variety of samples,such as Lalande ejecta,basalts,Copernicus ejecta,and regolith.The returned samples are valuable to explore the speculated urKREEP,to reveal the relationship between heat-producing elements and volcanism,to refine the lunar cratering chronology function,and to investigate volatiles in the regolith.
基金supported by the National Key R&D Program of China(grant No.2024YFA1611600)the SVOM project(a mission under the Strategic Priority Program on Space Science of the Chinese Academy of Sciences)+23 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550401)the National Natural Science Foundation of China(NSFC,grant No.12494573)partly supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(grant No.2024D01D32)Tianshan Talent Training Program(grant No.2023TSYCLJ0053)Tianshan Innovation Team Program(grant No.2024D14015)supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent(grant No.2024ZB110)the Postdoctoral Fellowship Program(grant No.GZC20241916)the General Fund(grant No.2024M763531)of the China Postdoctoral Science Foundationsupported by a Royal Society Dorothy Hodgkin Fellowship(grant Nos.DHF-R1-221175 and DHF-ERE-221005)support by a postdoctoral fellowship from the CNESsupported by the National Key R&D Program of China(grant No.2024YFA1611702)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550101)the support of the French Agence Nationale de la Recherche(ANR),under grant ANR-23-CE31-0011(project PEGaSUS)financial support from the GRAWITA Large Program Grant(PI P.D’Avanzo)financial support from the Italian Space Agency,contract ASI/INAF No.I/004/11/6support from the INAF project Premiale Supporto Arizona&Italiasupported by the National Natural Science Foundation of China(NSFC,grant No.12133003)supported by the National Natural Science Foundation of China(NSFC,grant No.12373042)the Bagui Scholars Program(No.GXR-6BG2424001)funded by the European Union(ERC,HEAVYMETAL,101071865,Views and opinions expressed are,however,those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Neither the European Union nor the granting authority can be held responsible for them)the Cosmic Dawn Center(DAWN)is funded by the Danish National Research Foundation under grant No.DNRF140supported by the National Natural Science Foundation of China(NSFC,grant Nos.12225305 and 12321003)supported by the National Natural Science Foundation of China(NSFC,grant No.12473049)supported by the General Fund(grant No.2024M763530)of the China Postdoctoral Science Foundation。
文摘Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from 17 space-and ground-based telescopes/instruments,covering wavelengths from NIR/optical to X-ray and GeV,and spanning from the prompt emission to the afterglow phase triggered by Swift and Fermi.The early afterglow observations were carried out by SVOM/C-GFT,and spectroscopic observations of the afterglow by GTC,VLT,and TNG determined the redshift of the burst(z=0.659)later.A comprehensive analysis of the prompt emission spectrum observed by Swift-BAT and Fermi-GBM/LAT reveals a rare and significant high-energy cutoff at 76 MeV.Assuming this cutoff is due toγγabsorption allows us to place an upper limit on the initial Lorentz factor,Γ_(0)<245.The optical/NIR and GeV afterglow light curves can be described by the standard external shock model,with early-time emission dominated by a reverse shock(RS)and a subsequent transition to forward shock(FS)emission.Our afterglow modeling yields a consistent estimate of the initial Lorentz factor(Γ_(0)∼234).Furthermore,the RS-to-FS magnetic field ratio(R 302B)indicates that the RS region is significantly more magnetized than the FS region.An isotropic-equivalent kinetic energy of E_(k,iso)=5.25×10^(54) erg is derived,and the correspondingγ-ray radiation efficiency is estimated to beη_(γ)=3.1%.On the other hand,the standard afterglow model cannot reproduce the X-ray light curve of GRB 240825A,calling for improved models to characterize all multiwavelength data.
基金supported by the VOLTAIRE project (ANR-10-LABX-100-01)funded by the ANR and the PIVOTS project provided by the Region Centre−Val de Loire (ARD 2020 program and CPER 2015−2020).
文摘Wildfire events are increasing globally which may be partly associated with climate change,resulting in significant adverse impacts on local,regional air quality and global climate.In September 2020,a small wildfire(burned area:36.3 ha)event occurred in Souesmes(Loiret-Cher,Sologne,France),and its plume spread out over 200 km on the following day as observed by the MODIS satellite.Based on measurements at a suburban site(~50 km northwest of the fire location)in Orléans and backward trajectory analysis,young wildfire plumes were characterized.Significant increases in gaseous pollutants(CO,CH_(4),N_(2)O,VOCs,etc.)and particles(including black carbon)were found within the wildfire plumes,leading to a reduced air quality.Emission factors,defined as EF(X)=ΔX/ΔCO(where,X represents the target species),of various trace gases and black carbon within the young wildfire plumes were determined accordingly and compared with previous studies.Changes in the ambient ions(such as ammonium,sulfate,nitrate,chloride,and nitrite in the particle-and gasphase)and aerosol properties(e.g.,aerosol water content,aerosol p H)were also quantified and discussed.Moreover,we estimated the total carbon and climate-related species(e.g.,CO_(2),CH_(4),N_(2)O,and BC)emissions and compared them with fire emission inventories.Current biomass burning emission inventories have uncertainties in estimating small fire burned areas and emissions.For instance,we found that the Global Fire Assimilation System(GFAS)may underestimate emissions(e.g.,CO)of this small wildfire while other inventories(GFED and FINN)showed significant overestimation.Considering that it is the first time to record wildfire plumes in this region,related atmospheric implications are presented and discussed.
基金supported by National Natural Science Foundation of China(grant number 42090014)National Key Research and Development Program of China(grant number 2021YFB3900104)the Dragon 5 Cooperation Programme(grant number 59312).
文摘The two vegetation transfer parameters ofτ(Vegetation Optical Depth,VOD)andω(Omega)could vary significantly across microwave channels in terms of frequencies,polarizations,and incidence angles,and their channel-dependent characteristics have not yet been fully investigated.In this study,we investigate the channel dependence of vegetation effects on microwave emissions from soils using a higher-order vegetation radiative transfer model of Tor Vergata.Corn was selected as the subject of investigation,and a corn growth model was developed utilizing field data collected from the multifrequency and multi-angular ground-based microwave radiation experiment from the Soil Moisture Experiment in the Luan River(SMELR).Upon compilation of the simulation dataset of microwave emissions of the corn field,the effective scattering albedo across different channels were calculated using the Tor Vergata model.Results show that vertical polarization of the vegetation optical depth is more affected by incidence angle changes,while horizontal polarization exhibits lower variations in vegetation optical depth due to incidence angle adjustments.The channel dependence of vegetation optical depth can be described as the polarization dependence parameter(CP)and the frequency dependence parameter(Cf).These two parameters enable the calculation of vegetation optical depth at any channel under three adjacent frequencies(L-band,C-band and X-band).The effective scattering albedo of vegetation does not vary significantly with vegetation height or angle.It primarily depends on frequency and polarization,showing an overall increasing trend with increasing frequency.The effective scattering albedo with vertical polarization is slightly higher than that with horizontal polarization at higher frequencies,while both are lower in the L-band.This investigation is helpful for understanding the vegetation effects on microwave emissions from soils,ultimately advancing the accuracy of large-scale soil moisture retrieval in vegetated areas.
文摘The Amazon basin has experienced an extreme drought that started in the austral summer of 2022-23 and extends into 2024. This drought started earlier than other previous droughts. Although some rain fell during the austral summer, totals remained below average. Higher temperatures during austral winter and spring 2023, which affected most of Central South America, then aggravated drought conditions. This coincided with an intense El Niño and abnormally warm tropical North Atlantic Ocean temperatures since mid-2023. Decreased rainfall across the Amazon basin, negative anomalies in evapotranspiration (derived from latent heat) and soil moisture indicators, as well as increased temperatures during the dry-to-wet transition season, September-October-November (SON) 2023, combined to delay the onset of the wet season in the hydrological year 2023-24 by nearly two months and caused it to be uncharacteristically weak. SON 2023 registered a precipitation deficit of the order of 50 to 100 mm/month, and temperatures +3˚C higher than usual in Amazonia, leading to reduced evapotranspiration and soil moisture indicators. These processes, in turn, determined an exceptionally late onset and a lengthening of the dry season, affecting the 2023-2024 hydrological year. These changes were aggravated by a heat wave from June to December 2023. Drought-heat compound events and their consequences are the most critical natural threats to society. River levels reached record lows, or dried up completely, affecting Amazonian ecosystems. Increased risk of wildfires is another concern exacerbated by these conditions.
文摘本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262km3,这相当于全球海平面上升3.2±0.7mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.
文摘The evolution of terminology in a given field of science and technology is a good indicator of the context in which inventions originated and how concepts have evolved.This is the case of photogrammetry,remote sensing and related methods,whose terminology evolved,first under the influence of the early inventors Laussedat and Meydenbauer,in French and German,respectively,and then in English and other languages as an international professional community developed.The development of space remote sensing and analytical photogrammetry led to the modification of old concepts and the renewal of terminology,and more recently,the advent of digital photography has blurred the boundaries between different fields and the meaning of the terms.This article proposes an analysis of the evolution of technical terms through the Google Ngram Viewer tool,which allows the visualization of the occurrence of terms in documents accessible on the web.Despite its biases,this tool allows an interpretation of the evolution of the terminology over a long period of time,as well as a comparison of the evolution observed in the different languages.In particular,it makes it possible to highlight the periods when these methods were very popular,as well as a recent decline in the use of classical terms such as photogrammetry and remote sensing in favor of a new vocabulary,due to the blurring of boundaries between disciplines and to the emergence of new solutions related to UAVs,computer vision,etc.,which have renewed the potential of classical methods.
基金support by the French Space Agency CNES,PNP(Programme National de Planétologie)TOSCA(Terre,Océan,Surfaces Continentales,Atmosphère)
文摘In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that(1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and(2), this process involves agglomerates with 100 μm to 1 mm size.
文摘Protection of silver mirror stacks from environmental degradation before launching is crucial for space applications.Hereby,we report a comparative study of the advanced protection of silver mirror stacks for space telescopes provided by SiO_(2)and Al_(2)O_(3)coatings in conditions of accelerated aging by sulfida-tion.The model silver stack samples were deposited by cathodic magnetron sputtering on a reference silica substrate for optical applications and a surface-pretreated SiC substrate.Accelerated aging was per-formed in dry and more severe wet conditions.Optical micrographic observations,surface and interface analysis by Time-of Flight Secondary Ion Mass Spectrometry(ToF-SIMS)and reflectivity measurements were combined to comparatively study the effects of degradation.The results show a lower kinetics of degradation by accelerated aging of the stacks protected by the alumina coating in comparable test conditions.
基金supported by the Paris Astronomical Data Centre(PADC)at Observatoire de Paris.
文摘In this comment on the article“Locating the source field lines of Jovian decametric radio emissions”by Wang YM et al.,2020,we discuss the assumptions used by the authors to compute the beaming angle of Jupiter’s decametric emissions induced by the moon Io.Their method,relying on multi-point radio observations,was applied to a single event observed on 14th March 2014 by Wind and both STEREO A/B spacecraft from~5 to~16 MHz.They have erroneously identified the emission as a northern(Io-B type)instead of a southern one(Io-D type).We encourage the authors to update their results with the correct hemisphere of origin and to test their method on a larger sample of Jupiter-Io emissions.
文摘Lake Issyk-Kul is the seventh deepest lake in the world situated inCentral Asiain theTien-ShanMountainsat the elevation of 1607 m above sea level. This area belongs toKyrgyzstan. From 1927 to 1997 the water level decreased by 3.4 m, and increased by 0.93 m from 1997 to 2011. The article analyzes the impact of the global warming on the Lake Issyk-Kul thermal regime and the components of its water balance: river discharge, precipitation, evaporation and lake level variations. It shows that the global warming has entailed the increase of the Lake Issyk-Kul water temperature down to the maximum depths, and river discharge increase due to the glaciers melting and the evaporation from the lake surface. The air temperature increase of 1 ℃ results in river discharge increas and lake level rise of 44 mm/year and surface evaporation increase of 88 mm/year. TheLakeIssyk-Kullevel increase after 1997, which takes place in the situation of global warming, was caused by the activation of the West air masses transport and increase of precipitation in autumn.
基金the National Natural Science Foundation of China(Nos.40890150,41730534,41776021)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42000000)+3 种基金the National Key Research and Development Program of China(No.2017YFA0603200)the Aoshan Science and Technology Innovation Project(No.2016ASKJ12)the Major Project of Science and Technology Innovation of Shandong(No.2018SDKJ01)supported by the USA National Science Foundation award 1851316。
文摘The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(>28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.
文摘Energy demand is increasing while we are facing a depletion of fossils fuels, the main source of energy production in the world. These last years, photovoltaic (PV) system technologies are growing rapidly among alternative sources of energy to contribute to mitigation of climate change. However, PV system efficiency researches operating under West African weather conditions are nascent. The first objective of this study is to investigate the sensitivity of common monocrystalline PV efficiency to local meteorological parameters (temperature, humidity, solar radiation) in two contrasted cities over West Africa: Niamey (Niger) in a Sahelian arid area and Abidjan (Cote d’Ivoire) in atropical humid area. The second objective is to quantify the effect of dust accumulation on PV efficiency in Niamey (Niger). The preliminary results show that PV efficiency is more sensitive to high temperature change especially under Niamey climate conditions (warmer than Abidjan) where high ambient temperatures above 33°C lead to an important decrease of PV efficiency. Increase of relative humidity induces a decrease of PV efficiency in both areas (Niamey and Abidjan). A power loss up to 12.46% is observed in Niamey after 21 days of dust accumulation.
文摘Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic effects of dry immersion. We assessed if the principal changes were restored within 24 h of recovery, and determined which changes were mainly associated with immersion-induced orthostatic intolerance. Five-day dry immersion without countermeasures, and with ad libitum water intake, standardized diet and a permitted short daily rise was performed in a relatively large sample for this experiment type (14 healthy young men). Reduction of total body water derived mostly from extracellular compartment, and stabilized rapidly at the new operating point. Decrease in plasma volume was estimated at 20% - 25%. Five-day immersion was sufficient to impair metabolism with a decrease in glucose tolerance and hypercholesterolemia, but was not associated with pronounced autonomic changes. Five-day immersion induced marked cardiovascular impairment. Immediately after immersion, over half of the subjects were unable to accomplish the 20-min 70° tilt;during tilt, heart rate and total peripheral resistance were increased, and stroke volume was decreased. However, 24 hours of normal physical activity appeared sufficient to reverse orthostatic tolerance and all signs of cardiovascular impairment, and to restitute plasma volume and extracellular fluid volume. Similarly, metabolic impairment was restored. In our study, the major factor responsible for orthostatic intolerance appeared to be hypovolemia. The absence of pronounced autonomic dysfunction might be explained by relatively short duration of dry immersion and daily short-time orthostatic stimulation.
文摘The hormone defined serum free conditioned medium (SFCM) of human nasopharyngeal carcinoma epithelioid cell line (CNE1) was assayed by both the 3H-thymidine incorporation test and the soft agar test. It was found that the SFCM stimulated the growth of long-term serum-free cultured CNE4 cells in ac-cordence with the fact that the growth rate of long-term serum-free cultured CNE1 cells was directly proportional to the plating density. Alternatively 5% SFCM inhibited the growth of short-term serum-free cultured CNE4 cells by 51% in which the indicator cell remained the responsiveness state of growing in the serum-supplemented medium to the effector of interest. Furthermore, SFCM resulted in the inhibition of anchorage-independent growth of CNE4 cells and A431 cells. Also in soft agar test. SFCM reduced the colony formation of NRK(?),9F cells in the presence of EGF or EGF plus TGF-β. These finding suggested that CNE4 secreted autocrine growth stimulating factor(s) and growth inhibiting factor(s) in the serum-free medium, the latter strongly reverse malignant phenotypes of CNE4 and A431 cells in serum-supplemented surrounding.
文摘This study was carried out under the aegis of the program Surface Water and Ocean Topography (SWOT) associated with the National Center of Space Studies (CNES). The future SWOT mission will offer new opportunities to survey the hydrodynamic in the rivers because it will provide data on the water level/ discharges with a high spatial resolution (oceans: 1 km, rivers: 100 m of width) and with a global cover. However, it is important to estimate the capacity of SWOT to reproduce the hydrodynamic phenomena in the estuaries and the temporal and the spatial variability of this dynamic. The aim of this paper is 1) to estimate the capacity of SWOT to reproduce the hydrological variability of watersheds, and 2) to validate the use of these data for other zone without hydrometric station. Based on discharge measurements and simulated Surface Water and Ocean Topography (SWOT) data, we have investigated the hydrological variability of the main French rivers (Seine, Loire, Garonne and Rh?ne) by applying a series of statistical analyses to the discharge time series. A frequency analysis has been also used using a technique of wavelet. Results have shown a similar hydrological variability of the four watersheds. Three different periods of hydrologic variability has been identified: before 1970, between 1970 and 1990, and after 1990. Using these analyses, simulated SWOT samples and discharges were compared during the three studied periods. Simulated SWOT data, obtained by a synthetic sampling of river discharges basing on the number of measurements per repeat orbit, reproduce the hydrological variability of rivers. Such reproduction seems to be independent in the number of SWOT passages (from two to four), except for the minimum and maximum annual discharges where number of overpass seems to have an influence. These results were validated by coherence wavelet which underlines coherence higher than 90% between simulated SWOT data and in-situ discharges. Nevertheless, good correlation was not observed for the minimum and the maximum annual discharge with an underestimation for SWOT maximum annual and an overestimation of the minimum annual SWOT ones. Moreover, best identification of minimum, mean and maximum annual discharge depends on SWOT overpasses.
文摘An alternative presentation of a relativistic theory of gravitation, equivalent to general relativity, is given. It is based upon the restriction of the Lorentz invariance of special relativity from a global invariance to a local one. The resulting expressions appear rather simple as we consider the transformations of a local set of pseudo-orthonormal coordinates and not the geometry of a 4-dimension hyper-surface described by a set of curvilinear coordinates. This is the major difference with the usual presentations of general relativity but that difference is purely formal. The usual approach is most adequate for describing the universe on a large scale in astrophysics and cosmology. The approach of this paper, derived from particle physics and focused on local reference frames, underlines the formal similarity between gravitation and the other interactions inasmuch as they are associated to the restriction of gauge symmetries from a global invariance to a local one.
文摘The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite and ground data collected on bare soil surfaces during the Multispectral Crop Monitoring experimental campaign of the CESBIO laboratory in 2010 over an agricultural region in southwestern France. The dataset covers a wide range of soil (viewing top soil moisture, surface roughness and texture) and satellite (at different frequencies: X-, C- and L-bands, and different incidence angles: 24.3° to 53.3°) configurations. The proposed methodology consists in identifying and correcting the residues of the models, depending on the surface properties (roughness, moisture, texture) and/or sensor characteristics (frequency, incidence angle). Finally, one model has been retained for each frequency domain. Results show that the enhancements of the models significantly increase the simulation performances. The coefficient of correlation increases of 23% in mean and the simulation errors (RMSE) are reduced to below 2 dB (at the X and C-bands) and to 1 dB at the L-band, compared to the initial models. At the X- and C-bands, the best performances of the modified models are provided by Dubois, whereas Oh 2004 is more suitable for the L-band (r is equal to 0.69, 0.65 and 0.85). Moreover, the modified models of Oh 1992 and 2004 and Dubois, developed in this study, offer a wider domain of validity than the initial formalism and increase the capabilities of retrieving the backscattering signal in view of applications of such approaches to stronglycontrasted agricultural surface states.