In present study,EOF analysis and extended singular value decomposition (ESVD) analysis are performed to explore the relationship between the winter tropical sea surface temperature anomalies (SSTAs) in the Pacific an...In present study,EOF analysis and extended singular value decomposition (ESVD) analysis are performed to explore the relationship between the winter tropical sea surface temperature anomalies (SSTAs) in the Pacific and the following summer rainfall anomalies in China.The two leading modes of winter tropical SSTAs in the Pacific are the SSTAs pattern characterized by "positive anomalies in the East and negative anomalies in the West" like the typical eastern Pacific El Nio and negative anomalies in the West and the central Pacific warming pattern characterized by "positive anomalies in the central region but negative anomalies in the East and West".The intraseasonal variations of the rainfall anomalies during the following summer in China that are associated with the eastern Pacific warming mode are characterized by positive anomalies south of the Yangtze River and negative anomalies in the Yangtze-Huai River Valley in June,and negative anomalies in South China and positive anomalies in the Yangtze River Valley and North China in July and August.In contrast,after the central Pacific warming mode,the corresponding intraseasonal variations of China’s summer rainfall are characterized by a nearly consistent pattern during the three summer months,which is positive in the South China coast and North China and negative in the Yangtze River Valley except for the positive anomalies in the Yangtze-Huai River Valley in July.These results may provide a reference for the seasonal prediction of the summer drought and flood distributions in China.展开更多
In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an e...In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.展开更多
In this paper, we mainly summarize and review the progresses in recent climatological studies(by CMSR,IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilit...In this paper, we mainly summarize and review the progresses in recent climatological studies(by CMSR,IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilities of monsoon troughs and their impacts on tropical cyclones and typhoons(TCs) geneses over the western North Pacific Ocean. The climatological characteristics of monsoon troughs and four types of circulation patterns favorable to TCs genesis over the western North Pacific Ocean in summer and autumn are given in this paper. It is also shown in this paper that the monsoon trough over the western North Pacific Ocean has obvious interannual and interdecadal variabilities. Especially, it is revealed in this paper that the interannual and interdecadal variabilities of the monsoon trough over the western North Pacific Ocean influence the TCs genesis not only through the impact on distributions of the vorticity in the lower troposphere and the divergence in the upper troposphere, the water vapor in the mid-and lower troposphere and the vertical shear of wind fields between the upper and lower troposphere over the western North Pacific Ocean, but also through the dynamical effects of the transition between convectively coupled tropical waves and providing disturbance energy. Besides, some climatological problems associated with TCs activity over the western North Pacific Ocean that need to be studied further are also pointed out in this paper.展开更多
The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet S...The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet Stream (EASWJ).The main behaviors of the EASWJ are also investigated through the reanalysis of observational NCEP/NCAR data.The mean state of the EASWJ,including its intensity,location,structure,and seasonal evolution is generally well-portrayed in the model.Compared with the observation,the model tends to reproduce a weaker jet center.And,during summer,the simulated jet center is northward-situated.Results also demonstrate the model captures the variability of EASWJ during summer well.The results of the empirical orthogonal function (EOF) applied on the zonal wind at 200 hPa (U200) over East Asia for both the observation and simulation indicate an inter-decadal shift around the late 1970s.The correlation coefficient between the corresponding principle components is as great as 0.42 with significance at the 99% confidence level.展开更多
In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how th...In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.展开更多
The Northern Hemisphere(NH)often experiences frequent cold air outbreaks and heavy snowfalls during La Nina winters.In 2022,a third-year La Nina event has exceeded both the oceanic and atmospheric thresholds since spr...The Northern Hemisphere(NH)often experiences frequent cold air outbreaks and heavy snowfalls during La Nina winters.In 2022,a third-year La Nina event has exceeded both the oceanic and atmospheric thresholds since spring and is predicted to reach its mature phase in December 2022.Under such a significant global climate signal,whether the Eurasian Continent will experience a tough cold winter should not be assumed,despite the direct influence of mid-to high-latitude,large-scale atmospheric circulations upon frequent Eurasian cold extremes,whose teleconnection physically operates by favoring Arctic air invasions into Eurasia as a consequence of the reduction of the meridional background temperature gradient in the NH.In the 2022/23 winter,as indicated by the seasonal predictions from various climate models and statistical approaches developed at the Institute of Atmospheric Physics,abnormal warming will very likely cover most parts of Europe under the control of the North Atlantic Oscillation and the anomalous anticyclone near the Ural Mountains,despite the cooling effects of La Nina.At the same time,the possibility of frequent cold conditions in mid-latitude Asia is also recognized for this upcoming winter,in accordance with the tendency for cold air invasions to be triggered by the synergistic effect of a warm Arctic and a cold tropical Pacific on the hemispheric scale.However,how the future climate will evolve in the 2022/23 winter is still subject to some uncertainty,mostly in terms of unpredictable internal atmospheric variability.Consequently,the status of the mid-to high-latitude atmospheric circulation should be timely updated by medium-term numerical weather forecasts and sub-seasonal-to-seasonal prediction for the necessary date information and early warnings.展开更多
Previous studies have shown that year-to-year incremental prediction (YIP) can obtain considerable skill in seasonal forecasts. This study analyzes the mathematical deRnition of YiP and derives its formula in the no...Previous studies have shown that year-to-year incremental prediction (YIP) can obtain considerable skill in seasonal forecasts. This study analyzes the mathematical deRnition of YiP and derives its formula in the nonlinear time series prediction (NP) method, it is shown that the two methods are equivalent when the prediction time series is embedded in one-dimensional phase space. Compared to previous NP models, the new one introduces multiple external forcings in the form of year-to-year increments. The year-to-year increments have physical meaning, which is better than the NP model with empirically chosen parameters. The summer rainfall over the middle to lower reaches of the Yangtze River is analyzed to examine the prediction skill of the NP models. Results show that the NP model with year-to-year increments can reach a similar skill as the YiP model. When the embedded number of dimensions is increased to two, more accurate prediction can be obtained. Besides similar results, the NP method has more dynamical meaning, as it is based on the classical reconstruction theory. Moreover, by choosing different embedded dimensions, the NP model can reconstruct the dynamical curve into phase space with more than one dimension, which is an advantage of the NP model. The present study suggests that YIP has a robust dynamical foundation, besides its physical mechanism, and the modified NP model has the potential to increase the operationaJ skill in short- term climate prediction.展开更多
Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seas...Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS.展开更多
Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of ...Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.展开更多
基金supported by the National Basic Research Program of China (Grant No.2009CB421405)the Major Research Plan of the National Natural Science Foundation of China (Grant No.40890151)+1 种基金the National Natural Science Foundation of China (Grant No.40730952)the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No.2006BAC03B03)
文摘In present study,EOF analysis and extended singular value decomposition (ESVD) analysis are performed to explore the relationship between the winter tropical sea surface temperature anomalies (SSTAs) in the Pacific and the following summer rainfall anomalies in China.The two leading modes of winter tropical SSTAs in the Pacific are the SSTAs pattern characterized by "positive anomalies in the East and negative anomalies in the West" like the typical eastern Pacific El Nio and negative anomalies in the West and the central Pacific warming pattern characterized by "positive anomalies in the central region but negative anomalies in the East and West".The intraseasonal variations of the rainfall anomalies during the following summer in China that are associated with the eastern Pacific warming mode are characterized by positive anomalies south of the Yangtze River and negative anomalies in the Yangtze-Huai River Valley in June,and negative anomalies in South China and positive anomalies in the Yangtze River Valley and North China in July and August.In contrast,after the central Pacific warming mode,the corresponding intraseasonal variations of China’s summer rainfall are characterized by a nearly consistent pattern during the three summer months,which is positive in the South China coast and North China and negative in the Yangtze River Valley except for the positive anomalies in the Yangtze-Huai River Valley in July.These results may provide a reference for the seasonal prediction of the summer drought and flood distributions in China.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.40475025 and 40221503)Buwen Dong was supported by the ENSEMBLES Project(GOCE-CT-2003-505539)at the UK Natural Environmental Research Council Centres for Atmospheric Science.
文摘In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.
基金National Natural Science Foundation of China(41375065)National Natural Science Foundation of China(41461164005,41230527)National Key Research and Development Program of China(2016YFA0600603)
文摘In this paper, we mainly summarize and review the progresses in recent climatological studies(by CMSR,IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilities of monsoon troughs and their impacts on tropical cyclones and typhoons(TCs) geneses over the western North Pacific Ocean. The climatological characteristics of monsoon troughs and four types of circulation patterns favorable to TCs genesis over the western North Pacific Ocean in summer and autumn are given in this paper. It is also shown in this paper that the monsoon trough over the western North Pacific Ocean has obvious interannual and interdecadal variabilities. Especially, it is revealed in this paper that the interannual and interdecadal variabilities of the monsoon trough over the western North Pacific Ocean influence the TCs genesis not only through the impact on distributions of the vorticity in the lower troposphere and the divergence in the upper troposphere, the water vapor in the mid-and lower troposphere and the vertical shear of wind fields between the upper and lower troposphere over the western North Pacific Ocean, but also through the dynamical effects of the transition between convectively coupled tropical waves and providing disturbance energy. Besides, some climatological problems associated with TCs activity over the western North Pacific Ocean that need to be studied further are also pointed out in this paper.
基金supported by the National Basic Research Program of China (973 Program) under Grant 2011CB309704the National Special Scientific Research Project for Public Interest under Grant 201006021the National Natural Science Foundation of China under Grants 40890155,U0733002,and 40810059005
文摘The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet Stream (EASWJ).The main behaviors of the EASWJ are also investigated through the reanalysis of observational NCEP/NCAR data.The mean state of the EASWJ,including its intensity,location,structure,and seasonal evolution is generally well-portrayed in the model.Compared with the observation,the model tends to reproduce a weaker jet center.And,during summer,the simulated jet center is northward-situated.Results also demonstrate the model captures the variability of EASWJ during summer well.The results of the empirical orthogonal function (EOF) applied on the zonal wind at 200 hPa (U200) over East Asia for both the observation and simulation indicate an inter-decadal shift around the late 1970s.The correlation coefficient between the corresponding principle components is as great as 0.42 with significance at the 99% confidence level.
基金the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LYDQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.
基金supported by the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant No.42175045)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42000000)。
文摘The Northern Hemisphere(NH)often experiences frequent cold air outbreaks and heavy snowfalls during La Nina winters.In 2022,a third-year La Nina event has exceeded both the oceanic and atmospheric thresholds since spring and is predicted to reach its mature phase in December 2022.Under such a significant global climate signal,whether the Eurasian Continent will experience a tough cold winter should not be assumed,despite the direct influence of mid-to high-latitude,large-scale atmospheric circulations upon frequent Eurasian cold extremes,whose teleconnection physically operates by favoring Arctic air invasions into Eurasia as a consequence of the reduction of the meridional background temperature gradient in the NH.In the 2022/23 winter,as indicated by the seasonal predictions from various climate models and statistical approaches developed at the Institute of Atmospheric Physics,abnormal warming will very likely cover most parts of Europe under the control of the North Atlantic Oscillation and the anomalous anticyclone near the Ural Mountains,despite the cooling effects of La Nina.At the same time,the possibility of frequent cold conditions in mid-latitude Asia is also recognized for this upcoming winter,in accordance with the tendency for cold air invasions to be triggered by the synergistic effect of a warm Arctic and a cold tropical Pacific on the hemispheric scale.However,how the future climate will evolve in the 2022/23 winter is still subject to some uncertainty,mostly in terms of unpredictable internal atmospheric variability.Consequently,the status of the mid-to high-latitude atmospheric circulation should be timely updated by medium-term numerical weather forecasts and sub-seasonal-to-seasonal prediction for the necessary date information and early warnings.
基金supported by the National Natural Sciences Foundation of China[41375112],[41530426],[41575058]the Key Technology Talent Program of the Chinese Academy of Sciencesthe Public Science and Technology Research Funds Projects of Ocean[201505013]
文摘Previous studies have shown that year-to-year incremental prediction (YIP) can obtain considerable skill in seasonal forecasts. This study analyzes the mathematical deRnition of YiP and derives its formula in the nonlinear time series prediction (NP) method, it is shown that the two methods are equivalent when the prediction time series is embedded in one-dimensional phase space. Compared to previous NP models, the new one introduces multiple external forcings in the form of year-to-year increments. The year-to-year increments have physical meaning, which is better than the NP model with empirically chosen parameters. The summer rainfall over the middle to lower reaches of the Yangtze River is analyzed to examine the prediction skill of the NP models. Results show that the NP model with year-to-year increments can reach a similar skill as the YiP model. When the embedded number of dimensions is increased to two, more accurate prediction can be obtained. Besides similar results, the NP method has more dynamical meaning, as it is based on the classical reconstruction theory. Moreover, by choosing different embedded dimensions, the NP model can reconstruct the dynamical curve into phase space with more than one dimension, which is an advantage of the NP model. The present study suggests that YIP has a robust dynamical foundation, besides its physical mechanism, and the modified NP model has the potential to increase the operationaJ skill in short- term climate prediction.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802).
文摘Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS.
基金the“33rd Frontier Science and Technology Forum”sponsored by the Chinese Academy of Sciences(Grant No.L12220036)the National Basic Research Program of China(Grant No.2013CB955803)the National Natural Science Foundation of China(Grant No.41205055)
文摘Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.