期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Isothermal hydrogen absorption process of Pd-capped Mg films traced by ion beam techniques and optical methods
1
作者 D.Abejón P.Prieto +6 位作者 J.K.Kim A.Redondo-Cubero M.L.Crespillo F.Leardini I.J.Ferrer G.García J.R.Ares 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3675-3684,共10页
Pd-capped nanocrystalline Mg films were prepared by electron beam evaporation and hydrogenated under isothermal conditions to inves-tigate the hydrogen absorption process via ion beam techniques and in situ optical me... Pd-capped nanocrystalline Mg films were prepared by electron beam evaporation and hydrogenated under isothermal conditions to inves-tigate the hydrogen absorption process via ion beam techniques and in situ optical methods.Films were characterized by different techniques such as X-ray diffraction(XRD)and scanning electron microscopy(SEM).Rutherford backscattering spectrometry(RBS)and elastic recoil detection analysis(ERDA)provided a detailed compositional depth profile of the films during hydrogenation.Gas-solid reaction kinetics theory applied to ERDA data revealed a H absorption mechanism controlled by H diffusion.This rate-limiting step was also confirmed by XRD measurements.The diffusion coefficient(D)was also determined via RBS and ERDA,with a value of(1.1±0.1)·10^(−13)cm^(2)/s at 140℃.Results confirm the validity of IBA to monitor the hydrogenation process and to extract the control mechanism of the process.The H kinetic information given by optical methods is strongly influenced by the optical absorption of the magnesium layer,revealing that thinner films are needed to extract further and reliable information from that technique. 展开更多
关键词 Magnesium hydride Hydrogen absorption Ion beam techniques Optical tracing Absorption mechanism
在线阅读 下载PDF
Electronic energy loss and ion velocity correlation effects in track production in swift-ion-irradiated LiNbO_(3):A quantitative assessment between structural damage morphology and energy deposition
2
作者 Xinqing Han Qing Huang +4 位作者 Miguel L.Crespillo Eva Zarkadoula Yong Liu Xuelin Wang Peng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第21期30-40,共11页
The primary motivation for studying how irradiation modifies the structures and properties of solid materials involves the understanding of undesirable phenomena,including irradiation-induced degradation of components... The primary motivation for studying how irradiation modifies the structures and properties of solid materials involves the understanding of undesirable phenomena,including irradiation-induced degradation of components in nuclear reactors and space exploration,and beneficial applications,including material performance tailoring through ion beam modification and defect engineering.In this work,the formation mechanism of latent tracks with different damage morphologies in LiNbO_(3)crystals under 0.09-6.17 Me V/u ion irradiation with an electronic energy loss from 2.6-13.2 ke V/nm is analyzed by experimental characterizations and numerical calculations.Irradiation-induced damage is preliminarily evaluated via the prism coupling technique to analyze the correlation between the dark-mode spectra and energy loss profiles of irradiated regions.Under the irradiation conditions of different ion velocities and electronic energy losses,different damage morphologies,from individual spherical defects to discontinuous and continuous tracks,are experimentally characterized.During ion penetration process,the ion velocity determines the spatiotemporal distribution of deposited irradiation energy induced by electronic energy loss,meaning that the two essential factors including electronic energy loss and ion velocity coaffect the track damage.The inelastic thermal spike model is used to numerically calculate the spatiotemporal evolutions of energy deposition and the corresponding atomic temperature under different irradiation conditions,and a quantitative relationship is proposed by comparison with corresponding experimentally observed track damage morphologies.The obtained quantitative relationship between irradiation conditions and track damage provides deep insight and guidance for understanding the damage behavior of crystal materials in extreme radiation environments and selecting irradiation parameters,including ion species and energies,for ion beam technique application in atomic-level defect manipulation,material modification,and micro/nanofabrication. 展开更多
关键词 Latent track damage Thermal spike model Electronic energy loss Velocity effect Ion modification
原文传递
A 2D scintillator-based proton detector for high repetition rate experiments 被引量:3
3
作者 M.Huault D.De Luis +9 位作者 J.I.Apinaniz M.De Marco C.Salgado N.Gordillo C.Gutierrez Neira J.A.Perez-Hemandez R.Fedosejevs G.Gatti L.Roso L.Volpe 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第4期15-20,共6页
We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design.It has been designed and built at the Spanish Center for Pulsed Lasers(CLPU)in Sa... We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design.It has been designed and built at the Spanish Center for Pulsed Lasers(CLPU)in Salamanca and tested in the proton accelerator at the Centro de Micro-Análisis de Materiales(CMAM)in Madrid.The detector is capable of being set in the high repetition rate(HRR)mode and reproduces the performance of the radiochromic film detector.It represents a new class of online detectors for laser-plasma physics experiments in the newly emerging high power laser laboratories working at HRR. 展开更多
关键词 high repetition rate laser particle acceleration online detector proton diagnostic scintillator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部