为发展中国气象局地球系统数值预报中心CMA-MESO模式对流尺度集合预报,基于CMA-MESO模式设计了观测扰动构建技术,并利用该技术发展集合资料同化(ensemble data assimilation,EDA)初值扰动方法。开展观测扰动敏感性试验、EDA方法在CMA-M...为发展中国气象局地球系统数值预报中心CMA-MESO模式对流尺度集合预报,基于CMA-MESO模式设计了观测扰动构建技术,并利用该技术发展集合资料同化(ensemble data assimilation,EDA)初值扰动方法。开展观测扰动敏感性试验、EDA方法在CMA-MESO对流尺度集合预报中的应用试验,分析观测扰动构建合理性及影响特征,并对比传统的动力降尺度方法与EDA方法的效果,结果表明:观测扰动可有效表征同化中来源于观测资料的不确定性特征;观测扰动主要影响CMA-MESO模式短时效预报效果,随时效延长逐渐耗散;EDA方法可有效形成对流尺度集合预报初值扰动,相对于传统的动力降尺度,该方法可显著减少初值扰动中来自背景场的扰动分量,并增加观测扰动分量体现观测的不确定性;强对流降水个例试验也表明,EDA方法可有效提高降水概率预报效果。展开更多
Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-ra...Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-range DLbased models raise many concerns.This study uses the singular vector(SV)initial condition(IC)perturbations of the China Meteorological Administration's Global Ensemble Prediction System(CMA-GEPS)as inputs of PGW for global ensemble prediction(PGW-GEPS)to investigate the ensemble forecast sensitivity of DL-based models to the IC errors.Meanwhile,the CMA-GEPS forecasts serve as benchmarks for comparison and verification.The spatial structures and prediction performance of PGW-GEPS are discussed and compared to CMA-GEPS based on seasonal ensemble experiments.The results show that the ensemble mean and dispersion of PGW-GEPS are similar to those of CMA-GEPS in the medium range but with smoother forecasts.Meanwhile,PGW-GEPS is sensitive to the SV IC perturbations.Specifically,PGWGEPS can generate realistic ensemble spread beyond the sub-synoptic scale(wavenumbers≤64)with SV IC perturbations.However,PGW's kinetic energy is significantly reduced at the sub-synoptic scale,leading to error growth behavior inconsistent with CMA-GEPS at that scale.Thus,this behavior indicates that the effective resolution of PGW-GEPS is beyond the sub-synoptic scale and is limited to predicting mesoscale atmospheric motions.In terms of the global mediumrange ensemble prediction performance,the probability prediction skill of PGW-GEPS is comparable to CMA-GEPS in the extratropic when they use the same IC perturbations.That means that PGW has a general ability to provide skillful global medium-range forecasts with different ICs from numerical weather prediction.展开更多
Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for du...Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.展开更多
在CMA-GFS(CMA Global Forecast System)全球四维变分资料同化系统(4DVar)基础上,参照BDA(Bogus Data Assimilation)方法,建立了一个全球模式台风初始化方案。该方案通过4DVar同化窗口吸收诊断处理后的1 h间隔台风中心定位及中心气压信...在CMA-GFS(CMA Global Forecast System)全球四维变分资料同化系统(4DVar)基础上,参照BDA(Bogus Data Assimilation)方法,建立了一个全球模式台风初始化方案。该方案通过4DVar同化窗口吸收诊断处理后的1 h间隔台风中心定位及中心气压信息,利用模式动力物理约束产生台风环流。同时,考虑到模式对台风的分辨能力,中心气压数据误差采用动态调整技术。2016年西北太平洋22个台风的试验表明,新方案不仅可以促进初始场中台风环流的生成,还可以显著减小CMAGFS全球预报系统的台风路径和强度预报平均误差,具有业务应用前景。展开更多
重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向...重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向风速(u)和经向风速(v)替代原有流函数和势函数作为新的风场控制变量,采用温度和地面气压(T,ps)替代原有非平衡无量纲气压作为新的质量场控制变量,同时不再考虑准地转平衡约束,而是采用连续方程弱约束保证分析平衡。背景误差参数统计和数值试验结果表明,采用重构后的极小化控制变量,观测信息传播更加局地,分析结构更加合理,避免了原方案在中、小尺度应用时存在的虚假相关问题。连续方程弱约束的引入,限制了同化分析中辐合、辐散的不合理增长,帮助新方案在分析更加局地的同时保证分析平衡。为期1个月的连续同化循环和预报试验结果表明,新方案可以减小风场和质量场分析误差,CMAMESO系统地面降水和10 m风场的预报评分显著提升。展开更多
文摘为发展中国气象局地球系统数值预报中心CMA-MESO模式对流尺度集合预报,基于CMA-MESO模式设计了观测扰动构建技术,并利用该技术发展集合资料同化(ensemble data assimilation,EDA)初值扰动方法。开展观测扰动敏感性试验、EDA方法在CMA-MESO对流尺度集合预报中的应用试验,分析观测扰动构建合理性及影响特征,并对比传统的动力降尺度方法与EDA方法的效果,结果表明:观测扰动可有效表征同化中来源于观测资料的不确定性特征;观测扰动主要影响CMA-MESO模式短时效预报效果,随时效延长逐渐耗散;EDA方法可有效形成对流尺度集合预报初值扰动,相对于传统的动力降尺度,该方法可显著减少初值扰动中来自背景场的扰动分量,并增加观测扰动分量体现观测的不确定性;强对流降水个例试验也表明,EDA方法可有效提高降水概率预报效果。
基金supported by the joint funds of the Chinese National Natural Science Foundation(NSFC)(Grant No.U2242213)the funds of the NSFC(Grant No.42341209)+2 种基金the National Key Research and Development(R&D)Program of the Ministry of Science and Technology of China(Grant No.2021YFC3000902)the National Science Foundation for Young Scholars(Grant No.42205166)the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSQ008)。
文摘Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-range DLbased models raise many concerns.This study uses the singular vector(SV)initial condition(IC)perturbations of the China Meteorological Administration's Global Ensemble Prediction System(CMA-GEPS)as inputs of PGW for global ensemble prediction(PGW-GEPS)to investigate the ensemble forecast sensitivity of DL-based models to the IC errors.Meanwhile,the CMA-GEPS forecasts serve as benchmarks for comparison and verification.The spatial structures and prediction performance of PGW-GEPS are discussed and compared to CMA-GEPS based on seasonal ensemble experiments.The results show that the ensemble mean and dispersion of PGW-GEPS are similar to those of CMA-GEPS in the medium range but with smoother forecasts.Meanwhile,PGW-GEPS is sensitive to the SV IC perturbations.Specifically,PGWGEPS can generate realistic ensemble spread beyond the sub-synoptic scale(wavenumbers≤64)with SV IC perturbations.However,PGW's kinetic energy is significantly reduced at the sub-synoptic scale,leading to error growth behavior inconsistent with CMA-GEPS at that scale.Thus,this behavior indicates that the effective resolution of PGW-GEPS is beyond the sub-synoptic scale and is limited to predicting mesoscale atmospheric motions.In terms of the global mediumrange ensemble prediction performance,the probability prediction skill of PGW-GEPS is comparable to CMA-GEPS in the extratropic when they use the same IC perturbations.That means that PGW has a general ability to provide skillful global medium-range forecasts with different ICs from numerical weather prediction.
基金sponsored by the National Natural Science Foundation of China(U2442601 and U2442218)the High Performance Computing Platform of Nanjing University of Information Science&Technology(NUIST)for their support of this work。
文摘Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.
文摘在CMA-GFS(CMA Global Forecast System)全球四维变分资料同化系统(4DVar)基础上,参照BDA(Bogus Data Assimilation)方法,建立了一个全球模式台风初始化方案。该方案通过4DVar同化窗口吸收诊断处理后的1 h间隔台风中心定位及中心气压信息,利用模式动力物理约束产生台风环流。同时,考虑到模式对台风的分辨能力,中心气压数据误差采用动态调整技术。2016年西北太平洋22个台风的试验表明,新方案不仅可以促进初始场中台风环流的生成,还可以显著减小CMAGFS全球预报系统的台风路径和强度预报平均误差,具有业务应用前景。