The full name of CISRI is Central Iron&Steel Research Institute under the Ministry of Metallurgical Industry in China.It is the largest institute of metallurgical process research in China(the word"large"...The full name of CISRI is Central Iron&Steel Research Institute under the Ministry of Metallurgical Industry in China.It is the largest institute of metallurgical process research in China(the word"large"here refers to various fields,large personnel and many research projects).It includes ironmaking,steel-making,cold and hot processing of steel,metallic product,ferroalloy,refractory,automatic metallurgy control,design展开更多
The Central Iron and Steel Research Institute(CISRI),directly under the Ministry of Metallurgical Industry(MMI),is a comprehensive research institute mainly engaged in the research and development of new metallic mate...The Central Iron and Steel Research Institute(CISRI),directly under the Ministry of Metallurgical Industry(MMI),is a comprehensive research institute mainly engaged in the research and development of new metallic materials and new iron and steel process.With the rapid development of China’s iron and steel industry,CISRI has also made a great progress since it was established more than 40 years ago.In 1994,the steel output of展开更多
铅冷快堆(Lead-cooled Fast Reactor,LFR)作为第四代核反应堆之一,因铅铋共晶合金(Lead-Bismuth Eutectic,LBE)优异的热物理和中子学性能被广泛关注,但其结构材料与液态LBE的相容性问题仍制约其发展。液态金属脆化(Liquid Metal Embritt...铅冷快堆(Lead-cooled Fast Reactor,LFR)作为第四代核反应堆之一,因铅铋共晶合金(Lead-Bismuth Eutectic,LBE)优异的热物理和中子学性能被广泛关注,但其结构材料与液态LBE的相容性问题仍制约其发展。液态金属脆化(Liquid Metal Embrittlement,LME)作为关键挑战之一,导致结构材料在特定环境下的伸长率和疲劳寿命显著降低,这严重威胁反应堆的安全性和可靠性。本研究围绕LFR结构材料的LME问题,详细介绍了主要候选结构材料—铁素体/马氏体钢、含Al铁素体钢、奥氏体钢及含Al奥氏体钢在高温液态LBE中的LME行为,明确了各种材料的LME敏感性。针对LME这一极具挑战性的问题,从温度、氧浓度、应变速率、预暴露及冶金状态等影响因素入手,归纳了各影响因素对LME的影响及影响机理的研究现状。最后,基于现有研究结果对LME机理理解方面进行了展望。展开更多
通过磁控溅射的方法在钕铁硼磁体表面分别制备了Tb_(70)Cu_(10)Al_(10)Zn_(10)和Tb_(100)薄膜,研究了热处理工艺对两类扩散磁体微结构和矫顽力的影响。结果表明,经过高温热处理制备的Tb_(70)Cu_(10)Al_(10)Zn_(10)和Tb_(100)扩散态磁体...通过磁控溅射的方法在钕铁硼磁体表面分别制备了Tb_(70)Cu_(10)Al_(10)Zn_(10)和Tb_(100)薄膜,研究了热处理工艺对两类扩散磁体微结构和矫顽力的影响。结果表明,经过高温热处理制备的Tb_(70)Cu_(10)Al_(10)Zn_(10)和Tb_(100)扩散态磁体的矫顽力增幅分别为6.8 kOe和5.7 kOe。在此基础上,各自继续进行低温回火形成的回火态磁体的矫顽力又分别增加1.4 k Oe和0.5 k Oe。两级热处理在多元扩散磁体中更有优势。显微组织分析表明,重稀土核壳结构是扩散态磁体矫顽力提升的重要原因,而连续薄层分布的晶界相是回火态磁体矫顽力进一步提升的关键因素。其中,对矫顽力增幅起主导作用的重稀土核壳结构形成于高温热处理阶段。但是,壳层厚度和壳层分布深度在低温回火阶段亦有微量调整,而晶界相形貌的优化只发生在低温回火阶段。与扩散态磁体相比,回火态磁体中分布的晶界相更细小弥散。特别是Tb_(70)Cu_(10)Al_(10)Zn_(10)回火态磁体,两级热处理优化了晶界相形貌分布,扩散源中微量元素的适度添加促进了连续薄层晶界相的形成,这也是其矫顽力进一步提升的根本原因。展开更多
文摘The full name of CISRI is Central Iron&Steel Research Institute under the Ministry of Metallurgical Industry in China.It is the largest institute of metallurgical process research in China(the word"large"here refers to various fields,large personnel and many research projects).It includes ironmaking,steel-making,cold and hot processing of steel,metallic product,ferroalloy,refractory,automatic metallurgy control,design
文摘The Central Iron and Steel Research Institute(CISRI),directly under the Ministry of Metallurgical Industry(MMI),is a comprehensive research institute mainly engaged in the research and development of new metallic materials and new iron and steel process.With the rapid development of China’s iron and steel industry,CISRI has also made a great progress since it was established more than 40 years ago.In 1994,the steel output of
文摘铅冷快堆(Lead-cooled Fast Reactor,LFR)作为第四代核反应堆之一,因铅铋共晶合金(Lead-Bismuth Eutectic,LBE)优异的热物理和中子学性能被广泛关注,但其结构材料与液态LBE的相容性问题仍制约其发展。液态金属脆化(Liquid Metal Embrittlement,LME)作为关键挑战之一,导致结构材料在特定环境下的伸长率和疲劳寿命显著降低,这严重威胁反应堆的安全性和可靠性。本研究围绕LFR结构材料的LME问题,详细介绍了主要候选结构材料—铁素体/马氏体钢、含Al铁素体钢、奥氏体钢及含Al奥氏体钢在高温液态LBE中的LME行为,明确了各种材料的LME敏感性。针对LME这一极具挑战性的问题,从温度、氧浓度、应变速率、预暴露及冶金状态等影响因素入手,归纳了各影响因素对LME的影响及影响机理的研究现状。最后,基于现有研究结果对LME机理理解方面进行了展望。
文摘通过磁控溅射的方法在钕铁硼磁体表面分别制备了Tb_(70)Cu_(10)Al_(10)Zn_(10)和Tb_(100)薄膜,研究了热处理工艺对两类扩散磁体微结构和矫顽力的影响。结果表明,经过高温热处理制备的Tb_(70)Cu_(10)Al_(10)Zn_(10)和Tb_(100)扩散态磁体的矫顽力增幅分别为6.8 kOe和5.7 kOe。在此基础上,各自继续进行低温回火形成的回火态磁体的矫顽力又分别增加1.4 k Oe和0.5 k Oe。两级热处理在多元扩散磁体中更有优势。显微组织分析表明,重稀土核壳结构是扩散态磁体矫顽力提升的重要原因,而连续薄层分布的晶界相是回火态磁体矫顽力进一步提升的关键因素。其中,对矫顽力增幅起主导作用的重稀土核壳结构形成于高温热处理阶段。但是,壳层厚度和壳层分布深度在低温回火阶段亦有微量调整,而晶界相形貌的优化只发生在低温回火阶段。与扩散态磁体相比,回火态磁体中分布的晶界相更细小弥散。特别是Tb_(70)Cu_(10)Al_(10)Zn_(10)回火态磁体,两级热处理优化了晶界相形貌分布,扩散源中微量元素的适度添加促进了连续薄层晶界相的形成,这也是其矫顽力进一步提升的根本原因。