期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimum scheduling of truck-based mobile energy couriers(MEC)using deep deterministic policy gradient
1
作者 Yaze Li Jingxian Wu Yanjun Pan 《Intelligent and Converged Networks》 2025年第3期195-208,共14页
We propose a new architecture of truck-based mobile energy couriers(MEC)for power distribution networks with high penetration of renewable energy sources(RES).Each MEC is a truck equipped with high-density inverters,c... We propose a new architecture of truck-based mobile energy couriers(MEC)for power distribution networks with high penetration of renewable energy sources(RES).Each MEC is a truck equipped with high-density inverters,converters,capacitor banks,and energy storage devices.The MEC platform can improve the flexibility,resilience,and RES hosting capability of a distribution grid through spatial-temporal energy reallocation based on the stochastic behaviors of RES and loads.The employment of MEC necessitates the development of complex scheduling and control schemes that can adaptively cope with the dynamic natures of both the power grid and the transportation network.The problem is formulated as a non-convex optimization problem to minimize the total generation cost,subject to the various constraints imposed by conventional and renewable energy sources,energy storage,and transportation networks,etc.The problem is solved by combining optimal power flow(OPF)with deep reinforcement learning(DRL)under the framework of deep deterministic policy gradient(DDPG).Simulation results demonstrate that the proposed MEC platform with DDPG can achieve significant cost reduction compared to conventional systems with static energy storage. 展开更多
关键词 transportation network renewable energy integration mobile energy couriers(MECs) markov decision process(MDP) deep deterministic policy gradient(DDPG)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部