The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from ...The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from the equatorial region of Cameroon as reinforcement. A study of this still little known fibre is necessary. This paper evaluates the physico-chemical and mechanical characteristics of the fibers. The fibers are extracted by us. A series of experiments is conducted for this purpose: morphological observation with a scanning electron microscope (SEM);density evaluation with a helium pycnometer;absorption rate evaluation according to the protocol available in the literature, Fourier Transform Infrared Spectrometry (FT-IR), chemical composition evaluation according to ASTM 1972 and ASTM 1977 standards, thermogravimetric analysis (TGA) and tensile tests on fiber bundles according to NF T25-501-3. The results show that the fiber is made up of several elementary fibers with oval cross-sections. A density of 1.477g/cm<sup>3</sup> close to that of hemp. These fibers have a water absorption rate of 342.5%, which correlates with the presence of free hydroxyl functional groups obtained from the spectrometry study (FT-IR). Chemical analysis reveals that the fiber is made up of celluloses (44.4%), hemicelluloses (30.8%), lignins (18.9%), pectins (3.3%), waxes (0.5%) and minerals (2.1%). In addition, we learn that the fibers studied dehydrate at 11.49%, showinga notable thermal stability around 235°C with a peak thermal decomposition of cellulose located at 420°C. In terms of mechanical behaviour, the results reveal that the fibers offer a Young’s modulus in traction of 12.4 ± 6.9 GPa, a tensile strength of 526 ± 128 MPa and an elongation at break of 2.25%. The information thus obtained makes it possible to place these fibers in the same fiber group as flax and jute. They could therefore be used for the same types of applications. They also inform us that these fibers can withstand the temperatures of composite shaping by thermocompression.展开更多
The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF,ATR-FT MIR.It was used in the development of a resin with Vachellia nilotica extract as a biohardener.This tannin is consisting of Ca...The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF,ATR-FT MIR.It was used in the development of a resin with Vachellia nilotica extract as a biohardener.This tannin is consisting of Catechin,Quercetin,Chalcone,Gallocatechin,Epigallocatechin gallate,Epicatechin gallate.The gel time of the resin at natural pH(pH=5.4)is 660 s and its MOE obtained by thermomechanical analysis is 3909 MPa.The tenacity of Urena lobata fibers were tested,woven into unidirectional mats(UD),and used as reinforcement in the development of biocomposite.The fibers tenacity at 20,30 and 50 mm lengths are respectively 65.41,41.04 and 33.86 cN·Tex^(−1).The UD biocomposite obtained had very interesting mechanical properties.Its density,tensile MOE,ultimate strength,bending MOE and MOR are respectively 926 kg·m^(−3),6 GPa,55 MPa,9.3 GPa and 68.3 MPa.This biocomposite can be used in a building exterior structure.展开更多
Wood plays a major role in the production of furniture and wooden structures.Nevertheless,in this process,the massive use of adhesives and plural connectors remains a definite problem for health and the environment.Th...Wood plays a major role in the production of furniture and wooden structures.Nevertheless,in this process,the massive use of adhesives and plural connectors remains a definite problem for health and the environment.Therefore,wood welding is a breakthrough in this respect.This paper reviews the applications of wood welding in furniture and construction and then examines advances in improving the durability of welded wood against water.Our contribution also highlights the need to join African tropical woods using the rotational friction welding technique.According to our results,these woods present interesting chemical singularities,which could provide solutions to the water vulnerability of the welded wood.Moreover,the use of such a joining method would first free the Cameroonian furniture industry from the chemical industry,secondly position it at the forefront of new eco-design trends and thirdly make it competitive with other countries in the Central African sub-region.These works enrich the long and rich bibliography on the technique of wood welding,which has long been conspicuous by its absence of tropical woods.展开更多
Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and...Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams.展开更多
The reinforcing impact of Lignocellulosic micro and nanofibrillated cellulose(L-MNFCs)obtained from Eucalyp-tus Globulus bark in Urea-Formaldehyde UF adhesive was tested.L-MNFCs were prepared by an environmentally fri...The reinforcing impact of Lignocellulosic micro and nanofibrillated cellulose(L-MNFCs)obtained from Eucalyp-tus Globulus bark in Urea-Formaldehyde UF adhesive was tested.L-MNFCs were prepared by an environmentally friendly,low-cost process using a combination process involving steam explosion followed by refining and ultra-fine grinding.Obtained L-MNFCs showed a web-like morphology with some aggregates and lignin nanodroplets.They present a mixture of residual fibers and fine elements with a width varying between 5 nm to 20μm,respec-tively.The effects of the addition of low amounts of L-MNFCs(1%wt.)on the properties of three different adhe-sives(Urea-Formaldehyde UF,Phenol-Formaldehyde PF,and Tannin-Hexamine TH)were studied by the evolution of the pH,the viscosity,and the mechanical properties.Results showed that the viscosity of PF and UF adhesives increased with the addition of L-MNFCs,unlike TH.Meanwhile,the addition led to better mechan-ical behavior for the three adhesives.Particleboards were then prepared using modified UF with L-MNFCs and tested.Results showed that an amount of 1%wt.of L-MNFCs was sufficient to increase the internal bonding by≈67%,the modulus of elasticity by≈43%,and the modulus of rupture by≈29%.展开更多
文摘The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from the equatorial region of Cameroon as reinforcement. A study of this still little known fibre is necessary. This paper evaluates the physico-chemical and mechanical characteristics of the fibers. The fibers are extracted by us. A series of experiments is conducted for this purpose: morphological observation with a scanning electron microscope (SEM);density evaluation with a helium pycnometer;absorption rate evaluation according to the protocol available in the literature, Fourier Transform Infrared Spectrometry (FT-IR), chemical composition evaluation according to ASTM 1972 and ASTM 1977 standards, thermogravimetric analysis (TGA) and tensile tests on fiber bundles according to NF T25-501-3. The results show that the fiber is made up of several elementary fibers with oval cross-sections. A density of 1.477g/cm<sup>3</sup> close to that of hemp. These fibers have a water absorption rate of 342.5%, which correlates with the presence of free hydroxyl functional groups obtained from the spectrometry study (FT-IR). Chemical analysis reveals that the fiber is made up of celluloses (44.4%), hemicelluloses (30.8%), lignins (18.9%), pectins (3.3%), waxes (0.5%) and minerals (2.1%). In addition, we learn that the fibers studied dehydrate at 11.49%, showinga notable thermal stability around 235°C with a peak thermal decomposition of cellulose located at 420°C. In terms of mechanical behaviour, the results reveal that the fibers offer a Young’s modulus in traction of 12.4 ± 6.9 GPa, a tensile strength of 526 ± 128 MPa and an elongation at break of 2.25%. The information thus obtained makes it possible to place these fibers in the same fiber group as flax and jute. They could therefore be used for the same types of applications. They also inform us that these fibers can withstand the temperatures of composite shaping by thermocompression.
文摘The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF,ATR-FT MIR.It was used in the development of a resin with Vachellia nilotica extract as a biohardener.This tannin is consisting of Catechin,Quercetin,Chalcone,Gallocatechin,Epigallocatechin gallate,Epicatechin gallate.The gel time of the resin at natural pH(pH=5.4)is 660 s and its MOE obtained by thermomechanical analysis is 3909 MPa.The tenacity of Urena lobata fibers were tested,woven into unidirectional mats(UD),and used as reinforcement in the development of biocomposite.The fibers tenacity at 20,30 and 50 mm lengths are respectively 65.41,41.04 and 33.86 cN·Tex^(−1).The UD biocomposite obtained had very interesting mechanical properties.Its density,tensile MOE,ultimate strength,bending MOE and MOR are respectively 926 kg·m^(−3),6 GPa,55 MPa,9.3 GPa and 68.3 MPa.This biocomposite can be used in a building exterior structure.
文摘Wood plays a major role in the production of furniture and wooden structures.Nevertheless,in this process,the massive use of adhesives and plural connectors remains a definite problem for health and the environment.Therefore,wood welding is a breakthrough in this respect.This paper reviews the applications of wood welding in furniture and construction and then examines advances in improving the durability of welded wood against water.Our contribution also highlights the need to join African tropical woods using the rotational friction welding technique.According to our results,these woods present interesting chemical singularities,which could provide solutions to the water vulnerability of the welded wood.Moreover,the use of such a joining method would first free the Cameroonian furniture industry from the chemical industry,secondly position it at the forefront of new eco-design trends and thirdly make it competitive with other countries in the Central African sub-region.These works enrich the long and rich bibliography on the technique of wood welding,which has long been conspicuous by its absence of tropical woods.
基金The Malaysia-France Bilateral Research Collaboration Project Grant 2021 (MATCH 2021)funded this research work,MOHE-Fire-Resistant and Water-Repellent Tannin-Furanic-Fatty Acid Biofoams。
文摘Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams.
基金The authors gratefully acknowledge the financial support of Labex Tec21 and Labex Arbre for the thesis funding.This work was also supported by the Franco-Chilean EcosSud Collaborative Program C18E05,ANID PIA/Apoyo CCTE AFB170007 of Universidad de Concepcion.
文摘The reinforcing impact of Lignocellulosic micro and nanofibrillated cellulose(L-MNFCs)obtained from Eucalyp-tus Globulus bark in Urea-Formaldehyde UF adhesive was tested.L-MNFCs were prepared by an environmentally friendly,low-cost process using a combination process involving steam explosion followed by refining and ultra-fine grinding.Obtained L-MNFCs showed a web-like morphology with some aggregates and lignin nanodroplets.They present a mixture of residual fibers and fine elements with a width varying between 5 nm to 20μm,respec-tively.The effects of the addition of low amounts of L-MNFCs(1%wt.)on the properties of three different adhe-sives(Urea-Formaldehyde UF,Phenol-Formaldehyde PF,and Tannin-Hexamine TH)were studied by the evolution of the pH,the viscosity,and the mechanical properties.Results showed that the viscosity of PF and UF adhesives increased with the addition of L-MNFCs,unlike TH.Meanwhile,the addition led to better mechan-ical behavior for the three adhesives.Particleboards were then prepared using modified UF with L-MNFCs and tested.Results showed that an amount of 1%wt.of L-MNFCs was sufficient to increase the internal bonding by≈67%,the modulus of elasticity by≈43%,and the modulus of rupture by≈29%.