Understanding the effects of vegetation cover on seedling survival is helpful for promoting vegetation restoration in environmentally fragile zones. This study was conducted in the desertified, moving sand dunes of Ho...Understanding the effects of vegetation cover on seedling survival is helpful for promoting vegetation restoration in environmentally fragile zones. This study was conducted in the desertified, moving sand dunes of Horqin Sandy Land, Inner Mongolia, northeastern China. We hyphothesized that (1) seed density (i.e., number/m2) increases as vegetation cover increases, and (2) there will be more surviving seedlings in locations with higher vegetation covers. Total vegetation cover and initial densities of seeds, germinated seeds and surviving seedlings of Ulmus pumilia were evaluated under various vegetation covers in trying to clarify the effects of vegetation cover on the early stages of the plant life history. In agreement with the first hypothesis, initial seed densities were greater (P〈0.05) under higher vegetation covers. The relationship between vegetation cover and initial seed density was represented by a quadratic regression, where a threshold occurred with a vegetation cover of 36% (P〈0.05). The higher total vegetation covers, however, did not result in increased densities of germinated seeds (P〉0.05), which on average represented 16.7% of initial seed densities. Even more, three months after the study initiation, total vegetation covers were similar (P〉0.05) at all positions in the dunes, and they determined a similar number (P〉0.05) of surviving seedlings at those positions (i.e. the second hypothesis had to be rejected). The mean number of seedlings that survived at all positions was only 4.5% of germinated seeds. The number of surviving elm seedlings (0 to 1.7 seedlings/m2) under various vegetations covers (12.2% to 20.8%) at all dune positions by late summer would most likely not contribute to vegetation restoration in the study area.展开更多
In this study, we determined carbon allocation and carbon stocks in the plant-soil system of different dune ecosystems in northeastern China. We quantified the species composition, above and below-ground bio masses, a...In this study, we determined carbon allocation and carbon stocks in the plant-soil system of different dune ecosystems in northeastern China. We quantified the species composition, above and below-ground bio masses, and carbon stocks of three dune types (i.e. active dunes, semi-stabilized dunes and stabilized dunes) and their corresponding inter-dune lowlands (i.e. interdune lowlands of active dunes, interdune lowlands of semi-stabilized dunes and interdune lowlands of stabilized dunes) in the Horqin Sandy Land. The results showed that the succession series on interdune lowlands of the Horqin Sandy Land confirmed differences in species composition of the various dune types. Aboveground carbon (AGC) on the interdune lowlands of semi-stabilized dunes (33.04 g C/m2) was greater (P〈0.05) than that on the interdune lowlands of active dunes (10.73 g C/m2). At the same time, the different dune types did not show any significant differences (/:〉〉0.05) in belowground plant carbon (BGC). However, the percentage of plant BGC in interdune lowlands of active dunes (81.5%) was significantly higher (P〈0.05) than that in the interdune lowlands of semi-stabilized dunes (58.9%). The predominant carbon pool in the study dune ecosystem was in the soil. It accounted for 95% to 99% of total carbon storage. Soil organic carbon (SOC) was at least 55% greater (P〈0.05) in the interdunes than in the dunes. Stabilized dunes showed at least a 37% greater (P〈0.05) SOC content than active dunes up to a 1-m soil depth. Meanwhile, SOC content of interdune lowlands of semi-stabilized dunes was greater (P〈0.05) than that of interdune lowlands of active dunes only up to a 20-cm soil depth. The dune ecosystem showed a great potential to store carbon when interdune lowlands of active dunes were conversed to interdune lowlands of semi-stabilized dunes, which stored up to twice as much carbon per unit volume as interdune lowlands of active dunes.展开更多
Fire is a natural disturbance occurring every few years in many grasslands ecosystems.However,since European colonization,fire has been highly reduced or even suppressed in Argentinean grasslands,fostering ignitable m...Fire is a natural disturbance occurring every few years in many grasslands ecosystems.However,since European colonization,fire has been highly reduced or even suppressed in Argentinean grasslands,fostering ignitable material accumulation.This has led to occasional catastrophic controldemanding fire events,extended for larger areas.The aims of this work are to study vegetation recovery and change after a non-natural fire event in mountain grasslands.The study area is located in the Ventania mountain system,mid-eastern Argentina.We studied vegetation recovery after fire(January 2014)in two different communities:grass-steppes(grasslands)and shrub-steppes(open low shrublands).We measured vegetation cover,species richness and bare ground percentage in burned and unburned areas 1,4,8,11 and 23 months after fire.Vegetation surveys were also performed at the end of the growing season(December)11 and 23 months after fire.Data were analyzed using regression analysis,ANOVA and multivariate analysis(NMS,PERMANOVA).Both communities increased their vegetation cover at the same rate,without differences between burned and unburned areas after two years.Species richness was higher in shrublands and their recovery was alsofaster than in grasslands.Considering functional composition,besides transient changes during the first year after fire,there were no differences in abundance of different functional vegetation groups two years after fire.At the same time,shrublands showed no differences in species composition,while grasslands had a different species composition in burned and unburned plots.Also,burned grassland showed a higher species richness than unburned grassland.Data shown mountain vegetation in Pampas grassland is adapted to fire,recovering cover and richness rapidly after fire and thus reducing soil erosion risks.Vegetation in mountain Pampas seems to be well adapted to fire,but in grasslands species composition has changed due to fire.Nonetheless,these changes seem to be not permanent since prefire species are still present in the area.展开更多
Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root...Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinfi, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid- and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den- sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.展开更多
Livestock grazing has a significant impact on natural grasslands,with approximately one-third of the world’s land area dedicated to this industry.Around 20%of global grasslands are highly degraded due to overgrazing,...Livestock grazing has a significant impact on natural grasslands,with approximately one-third of the world’s land area dedicated to this industry.Around 20%of global grasslands are highly degraded due to overgrazing,affecting their productivity and conservation capacity.Best practices are required to ensure sustainable livestock production that supports biodiversity.The Intermediate Disturbance Hypothesis(IDH)suggests that environments with moderate levels of disturbance exhibit a higher species diversity.Moderate grazing can reduce the dominance of certain species,thereby enhancing plant diversity.However,concerns arise regarding the increase of exotic and unpalatable species under moderate grazing levels,complicating grassland conservation efforts.The impact of livestock grazing on the functional structure of grasslands depends on factors such as grazing intensity,livestock species,and environmental conditions.Variations in grazing intensity may increase specific and functional diversity under moderate grazing,potentially masking the presence of invasive exotic species.In the Austral Pampas(Pampean phytogeographic province,Buenos Aires,Argentina),grasslands face various pressures from domestic livestock grazing that endanger their integrity if not properly managed.Therefore,our study aims to investigate potential differences in species richness and diversity,functional diversity,exotic plant abundance,and the number and distribution of plant functional groups across varying grazing intensities.The IDH is utilized as a tool to regulate livestock pressure for grassland conservation.Species and functional diversity indices were used to assess the impact of grazing on grassland diversity.Moderate grazing increased species and functional diversity,while intensively grazed or ungrazed areas showed reduced diversity.Livestock presence influenced the balance between native and exotic plants,with ungrazed areas having higher native plant abundance and grazed areas exhibiting higher exotic plant abundance.Grazing also influenced the composition of functional groups,with grazing-avoiding species being more prevalent in heavily grazed areas.Principal Component Analysis revealed a clear association between vegetation composition and livestock grazing intensity.These findings offer valuable insights into effectively managing grazing intensity for biodiversity conservation purposes.展开更多
Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quan...Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quantify the spatial variability of soil properties in different ecosystems. However, concerns still remain on how to characterize the effect of different sampling intensities on plant species richness within a given region. This study characterized the spatial variability of plant species richness and the species distribution pattern in a 25-hm2 sand dune plot in northeastern Inner Mongolia, China by using an intense sampling method(n=10,000). We also evaluated the overall effect of information loss associated with the spatial variability and distribution patterns of species richness under various scenarios of sampling intensities(n=10,000 to 289). Our results showed that semi-variograms of species richness were best described by the spherical and exponential models. As indicated by the nugget/sill ratio, species richness was different in terms of the strength of the spatial relationship. The different spatial metrics of species richness with increasing sampling intensities can represent different responses of the spatial patterns when compared with the reference set(n=10,000). This study indicated that an appropriate sampling intensity should be taken into account in field samplings for evaluating species biodiversity properly. A sampling intensity of n>2,500 for species richness yielded satisfactory results to resemble the spatial pattern of the above-quantified reference set(n=10,000) in this sand dune region of China.展开更多
Anastrepha fraterculus is a significant fruit fly pest in Argentina and other South American countries. Previous studies showed the key role of gut bacteria in the protection and nutrient assimilation of fruit flies, ...Anastrepha fraterculus is a significant fruit fly pest in Argentina and other South American countries. Previous studies showed the key role of gut bacteria in the protection and nutrient assimilation of fruit flies, particularly the importance of the biological fixation of nitrogen (diazotrophy). The presence of diazotrophic bacteria in A. fraterculus sp. 1 has been demonstrated through molecular, culture-independent methods. This study is aimed to characterize the composition and diversity of culturable gut bacteria of A. fraterculus sp. 1 males from different origins, and explore their metabolic roles, focusing on diazotrophic bacteria. Three male groups were studied: wild-caught (WW), lab-reared from wild larvae (WL), and lab-colony raised (LL). Gut bacteria were collected and characterized via 16S rRNA gene sequencing, with potential diazotrophs screened using selective media (SIL and NFb). Phylogenetic analysis of 16S rRNA gene mapped potential diazotrophs across the bacterial collection, while biochemical profiling and ARDRA (Amplified rDNA Restriction Analysis) were used to quickly differentiate diazotrophic bacteria. PCR testing for the nifH gene, associated with nitrogen fixation, was also performed. Bacterial diversity was highest in WW, followed by WL, and lowest in LL. In LL and WL, Enterobacter was the most frequent genus, while Klebsiella dominated in WW. Among the 20 SIL+ isolates identified, 10 came from WW, 9 from WL, and 1 from LL. One of these isolates (Enterobacter sp.) was tested as a supplement to the adult diet, without showing a beneficial effect on males pheromone calling behavior. Three isolates were also NFb+;two had the nifH gene. ARDRA was effective for rapid diazotroph discrimination. These findings highlight the potential of gut symbiotic bacteria in eco-friendly pest management strategies like the sterile insect technique (SIT). By using diazotrophic bacteria, protein requirements in artificial diets could be reduced, cutting costs and improving the affordability of SIT programs.展开更多
Aims The ability to form persistent seed banks is one of the best predictors of species’potential to establish in new ranges.Wild sunflower is native to North America where the formation of persistent seed banks is p...Aims The ability to form persistent seed banks is one of the best predictors of species’potential to establish in new ranges.Wild sunflower is native to North America where the formation of persistent seed banks is promoted by disturbance and it plays a key role on the establishment and persistence of native populations.However,the role of the seed banks on the establishment and persistence of invasive populations has not been studied.Here,we evaluated the role of seed bank and disturbance on the establishment and fitness,and seed persistence in the soil in several sunflower biotypes collected in ruderal(wild Helianthus annuus)and agrestal(natural crop–wild hybrid)habitats of Argentina as well as volunteer populations(progeny of commercial cultivars).Methods In a seed-bank experiment,we evaluated emergence,survival to reproduction,survival of emerged seedlings,inflorescences per plant and per plot under disturbed and undisturbed conditions over 2 years;in a seed-burial experiment,we evaluated seed persistence in the soil over four springs(6,18,30 and 42 months).Important Findings Overall,seedling emergence was early in the growing season(during winter),and it was promoted by disturbance,especially in the first year.Despite this,the number of inflorescences per plot was similar under both conditions,especially in ruderals.In the second year,emergence from the seed bank was much lower,but the survival rate was higher.In the seed-burial experiment,genetic differences were observed but seeds of ruderals and agrestals persisted up to 42 months while seeds of the volunteer did not persist longer than 6 months.The agrestal biotype showed an intermediate behavior between ruderals and volunteers in both experiments.Our findings showed that wild and crop–wild sunflower can form persistent seed banks outside its native range and that disturbance may facilitate its establishment in new areas.展开更多
基金supported by the State Key Development Program for Basic Research (2013CB429905)the National Natural Science Foundation of China (41201052 and 41071187)the National Department Public Benefit Research Foundation (201004023)
文摘Understanding the effects of vegetation cover on seedling survival is helpful for promoting vegetation restoration in environmentally fragile zones. This study was conducted in the desertified, moving sand dunes of Horqin Sandy Land, Inner Mongolia, northeastern China. We hyphothesized that (1) seed density (i.e., number/m2) increases as vegetation cover increases, and (2) there will be more surviving seedlings in locations with higher vegetation covers. Total vegetation cover and initial densities of seeds, germinated seeds and surviving seedlings of Ulmus pumilia were evaluated under various vegetation covers in trying to clarify the effects of vegetation cover on the early stages of the plant life history. In agreement with the first hypothesis, initial seed densities were greater (P〈0.05) under higher vegetation covers. The relationship between vegetation cover and initial seed density was represented by a quadratic regression, where a threshold occurred with a vegetation cover of 36% (P〈0.05). The higher total vegetation covers, however, did not result in increased densities of germinated seeds (P〉0.05), which on average represented 16.7% of initial seed densities. Even more, three months after the study initiation, total vegetation covers were similar (P〉0.05) at all positions in the dunes, and they determined a similar number (P〉0.05) of surviving seedlings at those positions (i.e. the second hypothesis had to be rejected). The mean number of seedlings that survived at all positions was only 4.5% of germinated seeds. The number of surviving elm seedlings (0 to 1.7 seedlings/m2) under various vegetations covers (12.2% to 20.8%) at all dune positions by late summer would most likely not contribute to vegetation restoration in the study area.
基金financially supported by the National Basic Research Program of China (2013CB429905-01)the sabbatical leave given by Agronomy Department, National University of the South and CERZOS (CONICET)+1 种基金the associateship awarded by the Third World Academy of Sciences (TWAS)- UNESCOhousing, facilities and financial support from the Institute of Applied Ecology, Chinese Academy of Sciences
文摘In this study, we determined carbon allocation and carbon stocks in the plant-soil system of different dune ecosystems in northeastern China. We quantified the species composition, above and below-ground bio masses, and carbon stocks of three dune types (i.e. active dunes, semi-stabilized dunes and stabilized dunes) and their corresponding inter-dune lowlands (i.e. interdune lowlands of active dunes, interdune lowlands of semi-stabilized dunes and interdune lowlands of stabilized dunes) in the Horqin Sandy Land. The results showed that the succession series on interdune lowlands of the Horqin Sandy Land confirmed differences in species composition of the various dune types. Aboveground carbon (AGC) on the interdune lowlands of semi-stabilized dunes (33.04 g C/m2) was greater (P〈0.05) than that on the interdune lowlands of active dunes (10.73 g C/m2). At the same time, the different dune types did not show any significant differences (/:〉〉0.05) in belowground plant carbon (BGC). However, the percentage of plant BGC in interdune lowlands of active dunes (81.5%) was significantly higher (P〈0.05) than that in the interdune lowlands of semi-stabilized dunes (58.9%). The predominant carbon pool in the study dune ecosystem was in the soil. It accounted for 95% to 99% of total carbon storage. Soil organic carbon (SOC) was at least 55% greater (P〈0.05) in the interdunes than in the dunes. Stabilized dunes showed at least a 37% greater (P〈0.05) SOC content than active dunes up to a 1-m soil depth. Meanwhile, SOC content of interdune lowlands of semi-stabilized dunes was greater (P〈0.05) than that of interdune lowlands of active dunes only up to a 20-cm soil depth. The dune ecosystem showed a great potential to store carbon when interdune lowlands of active dunes were conversed to interdune lowlands of semi-stabilized dunes, which stored up to twice as much carbon per unit volume as interdune lowlands of active dunes.
基金supported by the ANPCyT under grant PICT 2014-0865CONICET and Universidad Nacional del Sur from Argentina
文摘Fire is a natural disturbance occurring every few years in many grasslands ecosystems.However,since European colonization,fire has been highly reduced or even suppressed in Argentinean grasslands,fostering ignitable material accumulation.This has led to occasional catastrophic controldemanding fire events,extended for larger areas.The aims of this work are to study vegetation recovery and change after a non-natural fire event in mountain grasslands.The study area is located in the Ventania mountain system,mid-eastern Argentina.We studied vegetation recovery after fire(January 2014)in two different communities:grass-steppes(grasslands)and shrub-steppes(open low shrublands).We measured vegetation cover,species richness and bare ground percentage in burned and unburned areas 1,4,8,11 and 23 months after fire.Vegetation surveys were also performed at the end of the growing season(December)11 and 23 months after fire.Data were analyzed using regression analysis,ANOVA and multivariate analysis(NMS,PERMANOVA).Both communities increased their vegetation cover at the same rate,without differences between burned and unburned areas after two years.Species richness was higher in shrublands and their recovery was alsofaster than in grasslands.Considering functional composition,besides transient changes during the first year after fire,there were no differences in abundance of different functional vegetation groups two years after fire.At the same time,shrublands showed no differences in species composition,while grasslands had a different species composition in burned and unburned plots.Also,burned grassland showed a higher species richness than unburned grassland.Data shown mountain vegetation in Pampas grassland is adapted to fire,recovering cover and richness rapidly after fire and thus reducing soil erosion risks.Vegetation in mountain Pampas seems to be well adapted to fire,but in grasslands species composition has changed due to fire.Nonetheless,these changes seem to be not permanent since prefire species are still present in the area.
基金National Council for Scientific and Technological Research of Argentina (CONICET PIP Ner. 00211)
文摘Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinfi, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid- and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den- sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.
基金funded by CONICET(Consejo Nacional de Investigaciones Científicas y Técnicas)and SGCyT(Secretaría General de Ciencia y Tecnología,Universidad Nacional del Sur,Argentina).
文摘Livestock grazing has a significant impact on natural grasslands,with approximately one-third of the world’s land area dedicated to this industry.Around 20%of global grasslands are highly degraded due to overgrazing,affecting their productivity and conservation capacity.Best practices are required to ensure sustainable livestock production that supports biodiversity.The Intermediate Disturbance Hypothesis(IDH)suggests that environments with moderate levels of disturbance exhibit a higher species diversity.Moderate grazing can reduce the dominance of certain species,thereby enhancing plant diversity.However,concerns arise regarding the increase of exotic and unpalatable species under moderate grazing levels,complicating grassland conservation efforts.The impact of livestock grazing on the functional structure of grasslands depends on factors such as grazing intensity,livestock species,and environmental conditions.Variations in grazing intensity may increase specific and functional diversity under moderate grazing,potentially masking the presence of invasive exotic species.In the Austral Pampas(Pampean phytogeographic province,Buenos Aires,Argentina),grasslands face various pressures from domestic livestock grazing that endanger their integrity if not properly managed.Therefore,our study aims to investigate potential differences in species richness and diversity,functional diversity,exotic plant abundance,and the number and distribution of plant functional groups across varying grazing intensities.The IDH is utilized as a tool to regulate livestock pressure for grassland conservation.Species and functional diversity indices were used to assess the impact of grazing on grassland diversity.Moderate grazing increased species and functional diversity,while intensively grazed or ungrazed areas showed reduced diversity.Livestock presence influenced the balance between native and exotic plants,with ungrazed areas having higher native plant abundance and grazed areas exhibiting higher exotic plant abundance.Grazing also influenced the composition of functional groups,with grazing-avoiding species being more prevalent in heavily grazed areas.Principal Component Analysis revealed a clear association between vegetation composition and livestock grazing intensity.These findings offer valuable insights into effectively managing grazing intensity for biodiversity conservation purposes.
基金funded by the National Basic Research Program of China (2013CB429903)
文摘Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quantify the spatial variability of soil properties in different ecosystems. However, concerns still remain on how to characterize the effect of different sampling intensities on plant species richness within a given region. This study characterized the spatial variability of plant species richness and the species distribution pattern in a 25-hm2 sand dune plot in northeastern Inner Mongolia, China by using an intense sampling method(n=10,000). We also evaluated the overall effect of information loss associated with the spatial variability and distribution patterns of species richness under various scenarios of sampling intensities(n=10,000 to 289). Our results showed that semi-variograms of species richness were best described by the spherical and exponential models. As indicated by the nugget/sill ratio, species richness was different in terms of the strength of the spatial relationship. The different spatial metrics of species richness with increasing sampling intensities can represent different responses of the spatial patterns when compared with the reference set(n=10,000). This study indicated that an appropriate sampling intensity should be taken into account in field samplings for evaluating species biodiversity properly. A sampling intensity of n>2,500 for species richness yielded satisfactory results to resemble the spatial pattern of the above-quantified reference set(n=10,000) in this sand dune region of China.
基金Funding was provided by FAO/IAEA contract 22515(CRP D42017),PICT-2019-04141,PIP-CONICET 0039PI USAL 2022-80020210100018.
文摘Anastrepha fraterculus is a significant fruit fly pest in Argentina and other South American countries. Previous studies showed the key role of gut bacteria in the protection and nutrient assimilation of fruit flies, particularly the importance of the biological fixation of nitrogen (diazotrophy). The presence of diazotrophic bacteria in A. fraterculus sp. 1 has been demonstrated through molecular, culture-independent methods. This study is aimed to characterize the composition and diversity of culturable gut bacteria of A. fraterculus sp. 1 males from different origins, and explore their metabolic roles, focusing on diazotrophic bacteria. Three male groups were studied: wild-caught (WW), lab-reared from wild larvae (WL), and lab-colony raised (LL). Gut bacteria were collected and characterized via 16S rRNA gene sequencing, with potential diazotrophs screened using selective media (SIL and NFb). Phylogenetic analysis of 16S rRNA gene mapped potential diazotrophs across the bacterial collection, while biochemical profiling and ARDRA (Amplified rDNA Restriction Analysis) were used to quickly differentiate diazotrophic bacteria. PCR testing for the nifH gene, associated with nitrogen fixation, was also performed. Bacterial diversity was highest in WW, followed by WL, and lowest in LL. In LL and WL, Enterobacter was the most frequent genus, while Klebsiella dominated in WW. Among the 20 SIL+ isolates identified, 10 came from WW, 9 from WL, and 1 from LL. One of these isolates (Enterobacter sp.) was tested as a supplement to the adult diet, without showing a beneficial effect on males pheromone calling behavior. Three isolates were also NFb+;two had the nifH gene. ARDRA was effective for rapid diazotroph discrimination. These findings highlight the potential of gut symbiotic bacteria in eco-friendly pest management strategies like the sterile insect technique (SIT). By using diazotrophic bacteria, protein requirements in artificial diets could be reduced, cutting costs and improving the affordability of SIT programs.
基金supported by the National Agency for Scientific and Technological Promotion(PICT 2012-2854)by the Universidad Nacional del Sur(PGI 24/A204).
文摘Aims The ability to form persistent seed banks is one of the best predictors of species’potential to establish in new ranges.Wild sunflower is native to North America where the formation of persistent seed banks is promoted by disturbance and it plays a key role on the establishment and persistence of native populations.However,the role of the seed banks on the establishment and persistence of invasive populations has not been studied.Here,we evaluated the role of seed bank and disturbance on the establishment and fitness,and seed persistence in the soil in several sunflower biotypes collected in ruderal(wild Helianthus annuus)and agrestal(natural crop–wild hybrid)habitats of Argentina as well as volunteer populations(progeny of commercial cultivars).Methods In a seed-bank experiment,we evaluated emergence,survival to reproduction,survival of emerged seedlings,inflorescences per plant and per plot under disturbed and undisturbed conditions over 2 years;in a seed-burial experiment,we evaluated seed persistence in the soil over four springs(6,18,30 and 42 months).Important Findings Overall,seedling emergence was early in the growing season(during winter),and it was promoted by disturbance,especially in the first year.Despite this,the number of inflorescences per plot was similar under both conditions,especially in ruderals.In the second year,emergence from the seed bank was much lower,but the survival rate was higher.In the seed-burial experiment,genetic differences were observed but seeds of ruderals and agrestals persisted up to 42 months while seeds of the volunteer did not persist longer than 6 months.The agrestal biotype showed an intermediate behavior between ruderals and volunteers in both experiments.Our findings showed that wild and crop–wild sunflower can form persistent seed banks outside its native range and that disturbance may facilitate its establishment in new areas.