When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</su...When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We prove that all these works are already explicitly using the self-adjoint Einstein operator, which cannot be parametrized and the comparison needs no comment. As a byproduct, they are all based on a confusion between the so-called div operator D<sub>2</sub> induced from the Bianchi operator and the Cauchy operator, adjoint of the Killing operator D which is parametrizing the Riemann operator D<sub>1</sub> for an arbitrary n. This purely mathematical result deeply questions the origin and existence of gravitational waves, both with the mathematical foundations of general relativity. As a matter of fact, this new framework provides a totally open domain of applications for computer algebra as the quoted test can be studied by means of Pommaret bases and related recent packages.展开更多
The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations...The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n(n−1)/2,1,nwith a total of N=(n+1)(n+2)/2, that is 15 when n=4for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n(n−1)/2rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n≥1because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4, the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré group of space-time. Contrary to the Einstein equations, these equations can be all parametrized by the adjoint of the second Spencer operator through Nn(n−1)/2potentials. These results bring the need to revisit the mathematical foundations of both General Relativity and Gauge Theory according to a clever but rarely quoted paper of H. Poincaré (1901). They strengthen the recent comments we already made about the dual confusions made by Einstein (1915) while following Beltrami (1892), both using the same Einstein operator but ignoring it is self-adjoint in the framework of differential double duality.展开更多
The first purpose of this striking but difficult paper is to revisit the mathematical foundations of Elasticity (EL) and Electromagnetism (EM) by comparing the structure of these two theories and examining with detail...The first purpose of this striking but difficult paper is to revisit the mathematical foundations of Elasticity (EL) and Electromagnetism (EM) by comparing the structure of these two theories and examining with details their known couplings, in particular piezoelectricity and photoelasticity. Despite the strange Helmholtz and Mach-Lippmann analogies existing between them, no classical technique may provide a common setting. However, unexpected arguments discovered independently by the brothers E. and F. Cosserat in 1909 for EL and by H. Weyl in 1918 for EM are leading to construct a new differential sequence called Spencer sequence in the framework of the formal theory of Lie pseudo groups and to introduce it for the conformal group of space-time with 15 parameters. Then, all the previous explicit couplings can be deduced abstractly and one must just go to a laboratory in order to know about the coupling constants on which they are depending, like in the Hooke or Minkowski constitutive relations existing respectively and separately in EL or EM. We finally provide a new combined experimental and theoretical proof of the fact that any 1-form with value in the second order jets (elations) of the conformal group of space-time can be uniquely decomposed into the direct sum of the Ricci tensor and the electromagnetic field. This result questions the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT). In particular, the Einstein operator (6 terms) must be thus replaced by the adjoint of the Ricci operator (4 terms only) in the study of gravitational waves.展开更多
The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in ...The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.展开更多
When D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">...When D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><em><span style="white-space:nowrap;"></span></em><em></em></span> </span>is a linear differential operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span> </span></em></span></span>such that <span style="white-space:nowrap;">D<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em></span>=<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span></span> implies <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span>=0</span>. When D is involutive, the procedure provides successive first order involutive operators D1, ..., D<sub>n</sub>, when the ground manifold has dimension <em>n</em>, a result first found by M. Janet as early as in 1920, in a footnote. However, the link between this “Janet sequence” and the “Spencer sequence” first found by the author of this paper in 1978 is still not acknowledged. Conversely, when D<sub>1</sub> is given, a more difficult “inverse problem” is to look for an operator D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><em><span style="white-space:nowrap;">ξ</span></em></em><span style="white-space:nowrap;">→</span><em><em><span style="white-space:nowrap;">η</span></em><em></em><em></em> </em><em></em></span> </span>having the generating CC <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span><em></em>=0</span>. If this is possible, that is when the differential module defined by D<sub>1</sub> is torsion-free, one shall say that the operator D<sub>1</sub> is parametrized by D and there is no relation in general between D and D<sub>2</sub>. The parametrization is said to be “minimum” if the differential module defined by D has a vanishing differential rank and is thus a torsion module. The solution of this problem, first found by the author of this paper in 1995, is still not acknowledged. As for the applications of the “differential double duality” theory to standard equations of physics (<em>Cauchy</em> and Maxwell equations can be parametrized while <em>Einstein</em> equations cannot), we do not know other references. When <span style="font-size:10.0pt;font-family:;" "="">erator in arbitrary dimension</span>=1 as in control theory, the fact that controllability is a “built in” property of a control system, amounting to the existence of a parametrization and thus not depending on the choice of inputs and outputs, even with variable coefficients, is still not acknowledged by engineers. The parametrization of the <em>Cauchy</em> stress operator in arbitrary dimension <em>n</em> has nevertheless attracted, “separately” and without any general “guiding line”, many famous scientists (G.B. Airy in 1863 for <em>n </em>= 2, J.C. Maxwell in 1863, G. Morera and E. Beltrami in 1892 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 3</span> , A. Einstein in 1915 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 4</span> ). The aim of this paper is to solve the minimum parametrization problem in arbitrary dimension and to apply it through effective methods that could even be achieved by using computer algebra. Meanwhile, we prove that all these works are using the <em>Einstein</em> operator which is self-adjoint and not the <em>Ricci</em> operator, a fact showing that the <em>Einstein</em> operator, which cannot be parametrized, has already been exhibited by Beltrami more than 20 years before <em>Einstein</em>. As a byproduct, they are all based on the same confusion between the so-called <em>div</em> operator induced from the <em>Bianchi </em>operator D<sub>2</sub> and the <em>Cauchy</em> operator which is the formal adjoint of the Killing operator D parametrizing the Riemann operator D<sub>1</sub> for an arbitrary <em>n</em>. We prove that this purely mathematical result deeply questions the origin and existence of gravitational waves. We also present the similar motivating situation met in the study of contact structures when <em>n</em> = 3. Like the Michelson and Morley experiment, it is thus an open historical problem to know whether <em>Einstein</em> was aware of these previous works or not, but the comparison needs no comment.展开更多
A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well know...A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well known for M, but also third order CC for S and K. In a recent paper (DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, without using specific technical tools such as Teukolski scalars or Killing-Yano tensors. However, even if S(<em>m</em>) and K(<em>m</em>, <em>a</em>) are depending on constant parameters in such a way that S <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0 and K<span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><span style="white-space:nowrap;"><span style="white-space:nowrap;"></span></span> S when <em>a</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0, the CC of S do not provide the CC of M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0 while the CC of K do not provide the CC of S when a <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0. In this paper, using tricky motivating examples of operators with constant or variable parameters, we explain why the CC are depending on the choice of the parameters. In particular, the only purely intrinsic objects that can be defined, namely the extension modules, may change drastically. As the algebroid bracket is compatible with the <em>prolongation/projection</em> (PP) procedure, we provide for the first time all the CC for K in an intrinsic way, showing that they only depend on the underlying Killing algebra and that the role played by the Spencer operator is crucial. We get K < S < M with 2 < 4 < 10 for the Killing algebras and explain why the formal search of the CC for M, S or K are strikingly different, even if each Spencer sequence is isomorphic to the tensor product of the Poincaré sequence for the exterior derivative by the corresponding Lie algebra.展开更多
When a differential field K having n commuting derivations is given together with two finitely generated differential extensions L and M of K, an important problem in differential algebra is to exhibit a common differ...When a differential field K having n commuting derivations is given together with two finitely generated differential extensions L and M of K, an important problem in differential algebra is to exhibit a common differential extension N in order to define the new differential extensions L<span style="white-space:nowrap;"><span style="white-space:nowrap;">∩M and the smallest differential field <span style="white-space:nowrap;">(L,M ) <span style="white-space:nowrap;"><span style="white-space:nowrap;">⊂ N containing both L and M. Such a result allows to generalize the use of complex numbers in classical algebra. Having now two finitely generated differential modules L and M over the non-commutative ring <span style="white-space:nowrap;">D = K [d<sub>1</sub>,...,d<sub>n</sub>] = K [d] of differential operators with coefficients in K, we may similarly look for a differential module N containing both L and M in order to define <span style="white-space:nowrap;">L∩M and <span style="white-space:nowrap;">L+M. This is exactly the situation met in linear or non-linear OD or PD control theory by selecting the inputs and the outputs among the control variables. However, in many recent books and papers, we have shown that controllability was a built-in property of a control system, not depending on the choice of inputs and outputs. The purpose of this paper is thus to revisit control theory by showing the specific importance of the two previous problems and the part plaid by N in both cases for the parametrization of the control system. An important tool will be the study of differential correspondences, a modern name for what was called B<span style="white-space:nowrap;"><span style="white-space:nowrap;">äcklund problem during the last century, namely the elimination theory for groups of variables among systems of linear or nonlinear OD or PD equations. The main difficulty is to revisit differential homological algebra by using noncommutative localization as a way to generalize the symbolic calculus in the style of Heaviside and Mikusinski. Finally, when M is a D-module, this paper is using for the first time the fact that the system <span style="white-space:nowrap;">R = hom<sub>K</sub> (M,K) is a D-module for the Spencer operator acting on sections, avoiding thus behaviours, trajectories and signal spaces in a purely formal way, contrary to a few recent works on this difficult subject.展开更多
When <em>D</em> is a linear partial differential operator of any order, a <em>direct problem</em> is to look for an operator <em>D</em><sub>1</sub> generating the <em...When <em>D</em> is a linear partial differential operator of any order, a <em>direct problem</em> is to look for an operator <em>D</em><sub>1</sub> generating the <em>compatibility conditions </em>(CC) <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub><em>1</em></sub><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span> =</span><sub></sub> 0 of <em>D</em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">ξ </span></em></span></span>= <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span>. Conversely, when <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is given, an <em>inverse problem</em> is to look for an operator <span style="white-space:normal;"><em>D</em></span> such that its CC are generated by <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> and we shall say that <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is <em>parametrized</em> by <em>D</em> = <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>0</sub></span>. We may thus construct a differential sequence with successive operators <em>D</em>, <em>D</em><sub>1</sub>, <em>D</em><sub>2</sub>, ..., each operator parametrizing the next one. Introducing the<em> formal adjoint ad</em>() of an operator, we have <img src="Edit_ecbb631c-2896-4dad-8234-cacd5504f138.png" alt="" />but <span style="white-space:nowrap;"><em>ad</em> (<em>D</em><sub><em>i</em>-1</sub>)</span> may not generate <em>all</em> the CC of <em>ad </em>(<em>D</em><sub>i</sub>). When <em>D </em>= <em>K</em> [d<sub>1</sub>, ..., d<sub>n</sub>] = <em>K </em>[<em>d</em>] is the (non-commutative) ring of differential operators with coefficients in a differential field <em>K</em>, then <em>D</em> gives rise by residue to a <em>differential module M</em> over<em> D</em> while <em>a</em><em style="white-space:normal;">d </em><span style="white-space:normal;">(</span><em style="white-space:normal;">D</em><span style="white-space:normal;">)</span> gives rise to a differential module <em>N =ad (M)</em> over <em>D</em>. The <em>differential extension modules</em> <img src="Edit_55629608-629e-4b52-ac8f-52470473af77.png" alt="" /> with <span style="white-space:nowrap;"><em>ext<span style="font-size:10px;"><sup>0</sup></span></em><em>(M) = hom</em><sub><em>D</em></sub><em> (M, D)</em></span> only depend on <em>M</em> and are measuring the above gaps, <em>independently of the previous differential sequence</em>, in such a way that <span style="white-space:nowrap;"><em>ext</em><sup><em>1</em></sup><em> (N) = t (M)</em> </span> is the torsion submodule of <em>M</em>. The purpose of this paper is to compute them for certain Lie operators involved in the theory of Lie pseudogroups in arbitrary dimension <em>n</em> and to prove for the first time that the extension modules highly depend on the Vessiot <em>structure constants c</em>. Comparing the last invited lecture published in 1962 by Lanczos with a commutative diagram that we provided in a recent paper on gravitational waves, we suddenly understood the confusion made by Lanczos between Hodge duality and differential duality. We shall prove that Lanczos was not trying to parametrize the Riemann operator but its formal adjoint <span style="white-space:nowrap;"><em>Beltrami = ad (Riemann)</em></span> which can indeed be parametrized by the operator <span style="white-space:nowrap;"><em>Lanczos = ad (Bianchi) </em></span>in arbitrary dimension, “<em>one step further on to the right</em>” in the Killing sequence. Our purpose is thus to revisit the mathematical framework of Lanczos potential theory in the light of this comment, getting closer to the theory of Lie pseudogroups through double differential duality and the construction of finite length differential sequences for Lie operators. In particular, when one is dealing with a Lie group of transformations or, equivalently, when <em>D</em> is a Lie operator of finite type, we shall prove that <img src="Edit_3a20593a-fffe-4a20-a041-2c6bb9738d5d.png" alt="" />. It will follow that the <em>Riemann-Lanczos </em>and <em>Weyl-Lanczos</em> problems just amount to prove such a result for <em>i </em>= 1,2 and arbitrary <em>n</em> when <em>D</em> is the <em>classical or conformal Killing</em> operator. We provide a description of the potentials allowing to parametrize the Riemann and the Weyl operators in arbitrary dimension, both with their adjoint operators. Most of these results are new and have been checked by means of computer algebra.展开更多
In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar...In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar to the ones they already used for studying the Schwarzschild geometry. Of course, such a differential sequence is well known for the Minkowski metric and successively contains the Killing (order 1), the Riemann (order 2) and the Bianchi (order 1 again) operators in the linearized framework, as a particular case of the Vessiot structure equations. In all these cases, they discovered that the compatibility conditions (CC) for the corresponding Killing operator were involving a mixture of both second order and third order CC and their idea has been to exhibit only a minimal number of generating ones. Unhappily, these physicists are neither familiar with the formal theory of systems of partial differential equations and differential modules, nor with the formal theory of Lie pseudogroups. Hence, even if they discovered a link between these differential sequences and the number of parameters of the Lie group preserving the background metric, they have been unable to provide an intrinsic explanation of this fact, being limited by the technical use of Weyl spinors, complex Teukolsky scalars or Killing-Yano tensors. The purpose of this difficult computational paper is to provide differential and homological methods in order to revisit and solve these questions, not only in the previous cases but also in the specific case of any Lie group or Lie pseudogroup of transformations. These new tools, which are now available as computer algebra packages, question the mathematical foundations of GR and the origin of gravitational waves.展开更多
The search for the generating compatibility conditions (CC) of a given operator is a very recent problem met in general relativity in order to study the Killing operator for various standard useful metrics. Accordingl...The search for the generating compatibility conditions (CC) of a given operator is a very recent problem met in general relativity in order to study the Killing operator for various standard useful metrics. Accordingly, this paper can be considered as a natural continuation of a previous paper recently published in JMP under the title Minkowski, Schwarschild and Kerr metrics revisited. In particular, we prove that the intrinsic link existing between the lack of formal exactness of an operator sequence on the jet level, the lack of formal exactness of its corresponding symbol sequence and the lack of formal integrability (FI) of the initial operator is of a purely homological nature as it is based on the long exact connecting sequence provided by the so-called snake lemma in homological algebra. It is therefore quite difficult to grasp it in general and even more difficult to use it on explicit examples. It does not seem that any one of the results presented in this paper is known as most of the other authors who studied the above problem of computing the total number of generating CC are confusing this number with the degree of generality introduced by A. Einstein in his 1930 letters to E. Cartan. One of the motivating examples that we provide is so striking that it is even difficult to imagine that such an example could exist. We hope this paper could be used as a source of testing examples for future applications of computer algebra in general relativity and, more generally, in mathematical physics.展开更多
In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differentia...In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differential equations. In 1970, D.C. Spencer and coworkers studied the formal theory of such systems, using methods of homological algebra that were giving rise to “differential homological algebra”, replacing unmixed polynomial ideals by “pure differential modules”. The use of “differential extension modules” and “differential double duality” is essential for such a purpose. In particular, 0-pure differential modules are torsion-free and admit an “absolute parametrization” by means of arbitrary potential like functions. In 2012, we have been able to extend this result to arbitrary pure differential modules, introducing a “relative parametrization” where the potentials should satisfy compatible “differential constraints”. We recently noticed that General Relativity is just a way to parametrize the Cauchy stress equations by means of the formal adjoint of the Ricci operator in order to obtain a “minimum parametrization” by adding sufficiently many compatible differential constraints, exactly like the Lorenz condition in electromagnetism. In order to make this difficult paper rather self-contained, these unusual purely mathematical results are illustrated by many explicit examples, two of them dealing with contact transformations, and even strengthening the comments we recently provided on the mathematical foundations of General Relativity and Gauge Theory. They also bring additional doubts on the origin and existence of gravitational waves.展开更多
The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-d...The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949, 1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed is equal to for any minimal parametrization, the Einstein parametrization being “in between” with potentials. We provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today, but it could be strictly impossible to obtain them without using the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new insights towards the mathematical foundations of general relativity, it is written in a rather self-contained way.展开更多
Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still s...Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) con- servation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability.展开更多
We devise hybrid high-order(HHO)methods for the acoustic wave equation in the time domain.We frst consider the second-order formulation in time.Using the Newmark scheme for the temporal discretization,we show that the...We devise hybrid high-order(HHO)methods for the acoustic wave equation in the time domain.We frst consider the second-order formulation in time.Using the Newmark scheme for the temporal discretization,we show that the resulting HHO-Newmark scheme is energy-conservative,and this scheme is also amenable to static condensation at each time step.We then consider the formulation of the acoustic wave equation as a frst-order system together with singly-diagonally implicit and explicit Runge-Kutta(SDIRK and ERK)schemes.HHO-SDIRK schemes are amenable to static condensation at each time step.For HHO-ERK schemes,the use of the mixed-order formulation,where the polynomial degree of the cell unknowns is one order higher than that of the face unknowns,is key to beneft from the explicit structure of the scheme.Numerical results on test cases with analytical solutions show that the methods can deliver optimal convergence rates for smooth solutions of order O(hk+1)in the H1-norm and of order O(h^(k+2))in the L^(2)-norm.Moreover,test cases on wave propagation in heterogeneous media indicate the benefts of using high-order methods.展开更多
The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or part...The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.展开更多
We start recalling with critical eyes the mathematical methods used in gauge theory and prove that they are not coherent with continuum mechanics, in particular the analytical mechanics of rigid bodies (despite using ...We start recalling with critical eyes the mathematical methods used in gauge theory and prove that they are not coherent with continuum mechanics, in particular the analytical mechanics of rigid bodies (despite using the same group theoretical methods) and the well known couplings existing between elasticity and electromagnetism (piezzo electricity, photo elasticity, streaming birefringence). The purpose of this paper is to avoid such contradictions by using new mathematical methods coming from the formal theory of systems of partial differential equations and Lie pseudo groups. These results finally allow unifying the previous independent tentatives done by the brothers E. and F. Cosserat in 1909 for elasticity or H. Weyl in 1918 for electromagnetism by using respectively the group of rigid motions of space or the conformal group of space-time. Meanwhile we explain why the Poincaré duality scheme existing between geometry and physics has to do with homological algebra and algebraic analysis. We insist on the fact that these results could not have been obtained before 1975 as the corresponding tools were not known before.展开更多
When D: E →F is a linear differential operator of order q between the sections of vector bundles over a manifold X of dimension n, it is defined by a bundle map Φ: J<sub>q</sub>(E) &ra...When D: E →F is a linear differential operator of order q between the sections of vector bundles over a manifold X of dimension n, it is defined by a bundle map Φ: J<sub>q</sub>(E) →F=F<sub>0</sub> that may depend, explicitly or implicitly, on constant parameters a, b, c, ... . A “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: F<sub>0</sub> →F<sub>1</sub>. When D is involutive, that is when the corresponding system R<sub>q</sub> = ker (Φ) is involutive, this procedure provides successive first order involutive operators D<sub>1</sub>, ..., D<sub>n</sub>. Though D<sub>1</sub> οD = 0 implies ad (D) οad(D<sub>1</sub>) = 0 by taking the respective adjoint operators, then ad (D) may not generate the CC of ad (D<sub>1</sub>) and measuring such “gaps” led to introduce extension modules in differential homological algebra. They may also depend on the parameters and such a situation is well known in ordinary or partial control theory. When R<sub>q</sub> is not involutive, a standard prolongation/projection (PP) procedure allows in general to find integers r, s such that the image of the projection at order q+r of the prolongation is involutive but it may highly depend on the parameters. However, sometimes the resulting system no longer depends on the parameters and the extension modules do not depend on the parameters because it is known that they do not depend on the differential sequence used for their definition. The purpose of this paper is to study the above problems for the Kerr (m, a), Schwarzschild (m, 0) and Minkowski (0, 0) parameters while computing the dimensions of the inclusions for the respective Killing operators. Other striking motivating examples are also presented.展开更多
Our recent arXiv preprints and published papers on the solution of the Riemann-Lanczos and Weyl-Lanczos problems have brought our attention on the importance of revisiting the algebraic structure of the Bianchi identi...Our recent arXiv preprints and published papers on the solution of the Riemann-Lanczos and Weyl-Lanczos problems have brought our attention on the importance of revisiting the algebraic structure of the Bianchi identities in Riemannian geometry. We also discovered in the meantime that, in our first GB book of 1978, we had already used a new way for studying the compatibility conditions (CC) of an operator that may not be necessarily formally integrable (FI) in order to construct canonical formally exact differential sequences on the jet level. The purpose of this paper is to prove that the combination of these two facts clearly shows the specific importance of the Spencer operator and the Spencer δ-cohomology, totally absent from mathematical physics today. The results obtained are unavoidable because they only depend on elementary combinatorics and diagram chasing. They also provide for the first time the purely intrinsic interpretation of the respective numbers of successive first, second, third and higher order generating CC. However, if they of course agree with the linearized Killing operator over the Minkowski metric, they largely disagree with recent publications on the respective numbers of generating CC for the linearized Killing operator over the Schwarzschild and Kerr metrics. Many similar examples are illustrating these new techniques, providing in particular a few resolutions in which the orders of the successive operators may go “up and down” surprisingly, like in the conformal situation for various dimensions.展开更多
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonli...In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time.展开更多
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been ...In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved.展开更多
文摘When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We prove that all these works are already explicitly using the self-adjoint Einstein operator, which cannot be parametrized and the comparison needs no comment. As a byproduct, they are all based on a confusion between the so-called div operator D<sub>2</sub> induced from the Bianchi operator and the Cauchy operator, adjoint of the Killing operator D which is parametrizing the Riemann operator D<sub>1</sub> for an arbitrary n. This purely mathematical result deeply questions the origin and existence of gravitational waves, both with the mathematical foundations of general relativity. As a matter of fact, this new framework provides a totally open domain of applications for computer algebra as the quoted test can be studied by means of Pommaret bases and related recent packages.
文摘The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n(n−1)/2,1,nwith a total of N=(n+1)(n+2)/2, that is 15 when n=4for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n(n−1)/2rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n≥1because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4, the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré group of space-time. Contrary to the Einstein equations, these equations can be all parametrized by the adjoint of the second Spencer operator through Nn(n−1)/2potentials. These results bring the need to revisit the mathematical foundations of both General Relativity and Gauge Theory according to a clever but rarely quoted paper of H. Poincaré (1901). They strengthen the recent comments we already made about the dual confusions made by Einstein (1915) while following Beltrami (1892), both using the same Einstein operator but ignoring it is self-adjoint in the framework of differential double duality.
文摘The first purpose of this striking but difficult paper is to revisit the mathematical foundations of Elasticity (EL) and Electromagnetism (EM) by comparing the structure of these two theories and examining with details their known couplings, in particular piezoelectricity and photoelasticity. Despite the strange Helmholtz and Mach-Lippmann analogies existing between them, no classical technique may provide a common setting. However, unexpected arguments discovered independently by the brothers E. and F. Cosserat in 1909 for EL and by H. Weyl in 1918 for EM are leading to construct a new differential sequence called Spencer sequence in the framework of the formal theory of Lie pseudo groups and to introduce it for the conformal group of space-time with 15 parameters. Then, all the previous explicit couplings can be deduced abstractly and one must just go to a laboratory in order to know about the coupling constants on which they are depending, like in the Hooke or Minkowski constitutive relations existing respectively and separately in EL or EM. We finally provide a new combined experimental and theoretical proof of the fact that any 1-form with value in the second order jets (elations) of the conformal group of space-time can be uniquely decomposed into the direct sum of the Ricci tensor and the electromagnetic field. This result questions the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT). In particular, the Einstein operator (6 terms) must be thus replaced by the adjoint of the Ricci operator (4 terms only) in the study of gravitational waves.
文摘The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.
文摘When D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><em><span style="white-space:nowrap;"></span></em><em></em></span> </span>is a linear differential operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span> </span></em></span></span>such that <span style="white-space:nowrap;">D<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em></span>=<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span></span> implies <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span>=0</span>. When D is involutive, the procedure provides successive first order involutive operators D1, ..., D<sub>n</sub>, when the ground manifold has dimension <em>n</em>, a result first found by M. Janet as early as in 1920, in a footnote. However, the link between this “Janet sequence” and the “Spencer sequence” first found by the author of this paper in 1978 is still not acknowledged. Conversely, when D<sub>1</sub> is given, a more difficult “inverse problem” is to look for an operator D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><em><span style="white-space:nowrap;">ξ</span></em></em><span style="white-space:nowrap;">→</span><em><em><span style="white-space:nowrap;">η</span></em><em></em><em></em> </em><em></em></span> </span>having the generating CC <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span><em></em>=0</span>. If this is possible, that is when the differential module defined by D<sub>1</sub> is torsion-free, one shall say that the operator D<sub>1</sub> is parametrized by D and there is no relation in general between D and D<sub>2</sub>. The parametrization is said to be “minimum” if the differential module defined by D has a vanishing differential rank and is thus a torsion module. The solution of this problem, first found by the author of this paper in 1995, is still not acknowledged. As for the applications of the “differential double duality” theory to standard equations of physics (<em>Cauchy</em> and Maxwell equations can be parametrized while <em>Einstein</em> equations cannot), we do not know other references. When <span style="font-size:10.0pt;font-family:;" "="">erator in arbitrary dimension</span>=1 as in control theory, the fact that controllability is a “built in” property of a control system, amounting to the existence of a parametrization and thus not depending on the choice of inputs and outputs, even with variable coefficients, is still not acknowledged by engineers. The parametrization of the <em>Cauchy</em> stress operator in arbitrary dimension <em>n</em> has nevertheless attracted, “separately” and without any general “guiding line”, many famous scientists (G.B. Airy in 1863 for <em>n </em>= 2, J.C. Maxwell in 1863, G. Morera and E. Beltrami in 1892 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 3</span> , A. Einstein in 1915 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 4</span> ). The aim of this paper is to solve the minimum parametrization problem in arbitrary dimension and to apply it through effective methods that could even be achieved by using computer algebra. Meanwhile, we prove that all these works are using the <em>Einstein</em> operator which is self-adjoint and not the <em>Ricci</em> operator, a fact showing that the <em>Einstein</em> operator, which cannot be parametrized, has already been exhibited by Beltrami more than 20 years before <em>Einstein</em>. As a byproduct, they are all based on the same confusion between the so-called <em>div</em> operator induced from the <em>Bianchi </em>operator D<sub>2</sub> and the <em>Cauchy</em> operator which is the formal adjoint of the Killing operator D parametrizing the Riemann operator D<sub>1</sub> for an arbitrary <em>n</em>. We prove that this purely mathematical result deeply questions the origin and existence of gravitational waves. We also present the similar motivating situation met in the study of contact structures when <em>n</em> = 3. Like the Michelson and Morley experiment, it is thus an open historical problem to know whether <em>Einstein</em> was aware of these previous works or not, but the comparison needs no comment.
文摘A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well known for M, but also third order CC for S and K. In a recent paper (DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, without using specific technical tools such as Teukolski scalars or Killing-Yano tensors. However, even if S(<em>m</em>) and K(<em>m</em>, <em>a</em>) are depending on constant parameters in such a way that S <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0 and K<span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><span style="white-space:nowrap;"><span style="white-space:nowrap;"></span></span> S when <em>a</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span></span> 0, the CC of S do not provide the CC of M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0 while the CC of K do not provide the CC of S when a <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span></span> 0. In this paper, using tricky motivating examples of operators with constant or variable parameters, we explain why the CC are depending on the choice of the parameters. In particular, the only purely intrinsic objects that can be defined, namely the extension modules, may change drastically. As the algebroid bracket is compatible with the <em>prolongation/projection</em> (PP) procedure, we provide for the first time all the CC for K in an intrinsic way, showing that they only depend on the underlying Killing algebra and that the role played by the Spencer operator is crucial. We get K < S < M with 2 < 4 < 10 for the Killing algebras and explain why the formal search of the CC for M, S or K are strikingly different, even if each Spencer sequence is isomorphic to the tensor product of the Poincaré sequence for the exterior derivative by the corresponding Lie algebra.
文摘When a differential field K having n commuting derivations is given together with two finitely generated differential extensions L and M of K, an important problem in differential algebra is to exhibit a common differential extension N in order to define the new differential extensions L<span style="white-space:nowrap;"><span style="white-space:nowrap;">∩M and the smallest differential field <span style="white-space:nowrap;">(L,M ) <span style="white-space:nowrap;"><span style="white-space:nowrap;">⊂ N containing both L and M. Such a result allows to generalize the use of complex numbers in classical algebra. Having now two finitely generated differential modules L and M over the non-commutative ring <span style="white-space:nowrap;">D = K [d<sub>1</sub>,...,d<sub>n</sub>] = K [d] of differential operators with coefficients in K, we may similarly look for a differential module N containing both L and M in order to define <span style="white-space:nowrap;">L∩M and <span style="white-space:nowrap;">L+M. This is exactly the situation met in linear or non-linear OD or PD control theory by selecting the inputs and the outputs among the control variables. However, in many recent books and papers, we have shown that controllability was a built-in property of a control system, not depending on the choice of inputs and outputs. The purpose of this paper is thus to revisit control theory by showing the specific importance of the two previous problems and the part plaid by N in both cases for the parametrization of the control system. An important tool will be the study of differential correspondences, a modern name for what was called B<span style="white-space:nowrap;"><span style="white-space:nowrap;">äcklund problem during the last century, namely the elimination theory for groups of variables among systems of linear or nonlinear OD or PD equations. The main difficulty is to revisit differential homological algebra by using noncommutative localization as a way to generalize the symbolic calculus in the style of Heaviside and Mikusinski. Finally, when M is a D-module, this paper is using for the first time the fact that the system <span style="white-space:nowrap;">R = hom<sub>K</sub> (M,K) is a D-module for the Spencer operator acting on sections, avoiding thus behaviours, trajectories and signal spaces in a purely formal way, contrary to a few recent works on this difficult subject.
文摘When <em>D</em> is a linear partial differential operator of any order, a <em>direct problem</em> is to look for an operator <em>D</em><sub>1</sub> generating the <em>compatibility conditions </em>(CC) <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub><em>1</em></sub><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span> =</span><sub></sub> 0 of <em>D</em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">ξ </span></em></span></span>= <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span>. Conversely, when <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is given, an <em>inverse problem</em> is to look for an operator <span style="white-space:normal;"><em>D</em></span> such that its CC are generated by <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> and we shall say that <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is <em>parametrized</em> by <em>D</em> = <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>0</sub></span>. We may thus construct a differential sequence with successive operators <em>D</em>, <em>D</em><sub>1</sub>, <em>D</em><sub>2</sub>, ..., each operator parametrizing the next one. Introducing the<em> formal adjoint ad</em>() of an operator, we have <img src="Edit_ecbb631c-2896-4dad-8234-cacd5504f138.png" alt="" />but <span style="white-space:nowrap;"><em>ad</em> (<em>D</em><sub><em>i</em>-1</sub>)</span> may not generate <em>all</em> the CC of <em>ad </em>(<em>D</em><sub>i</sub>). When <em>D </em>= <em>K</em> [d<sub>1</sub>, ..., d<sub>n</sub>] = <em>K </em>[<em>d</em>] is the (non-commutative) ring of differential operators with coefficients in a differential field <em>K</em>, then <em>D</em> gives rise by residue to a <em>differential module M</em> over<em> D</em> while <em>a</em><em style="white-space:normal;">d </em><span style="white-space:normal;">(</span><em style="white-space:normal;">D</em><span style="white-space:normal;">)</span> gives rise to a differential module <em>N =ad (M)</em> over <em>D</em>. The <em>differential extension modules</em> <img src="Edit_55629608-629e-4b52-ac8f-52470473af77.png" alt="" /> with <span style="white-space:nowrap;"><em>ext<span style="font-size:10px;"><sup>0</sup></span></em><em>(M) = hom</em><sub><em>D</em></sub><em> (M, D)</em></span> only depend on <em>M</em> and are measuring the above gaps, <em>independently of the previous differential sequence</em>, in such a way that <span style="white-space:nowrap;"><em>ext</em><sup><em>1</em></sup><em> (N) = t (M)</em> </span> is the torsion submodule of <em>M</em>. The purpose of this paper is to compute them for certain Lie operators involved in the theory of Lie pseudogroups in arbitrary dimension <em>n</em> and to prove for the first time that the extension modules highly depend on the Vessiot <em>structure constants c</em>. Comparing the last invited lecture published in 1962 by Lanczos with a commutative diagram that we provided in a recent paper on gravitational waves, we suddenly understood the confusion made by Lanczos between Hodge duality and differential duality. We shall prove that Lanczos was not trying to parametrize the Riemann operator but its formal adjoint <span style="white-space:nowrap;"><em>Beltrami = ad (Riemann)</em></span> which can indeed be parametrized by the operator <span style="white-space:nowrap;"><em>Lanczos = ad (Bianchi) </em></span>in arbitrary dimension, “<em>one step further on to the right</em>” in the Killing sequence. Our purpose is thus to revisit the mathematical framework of Lanczos potential theory in the light of this comment, getting closer to the theory of Lie pseudogroups through double differential duality and the construction of finite length differential sequences for Lie operators. In particular, when one is dealing with a Lie group of transformations or, equivalently, when <em>D</em> is a Lie operator of finite type, we shall prove that <img src="Edit_3a20593a-fffe-4a20-a041-2c6bb9738d5d.png" alt="" />. It will follow that the <em>Riemann-Lanczos </em>and <em>Weyl-Lanczos</em> problems just amount to prove such a result for <em>i </em>= 1,2 and arbitrary <em>n</em> when <em>D</em> is the <em>classical or conformal Killing</em> operator. We provide a description of the potentials allowing to parametrize the Riemann and the Weyl operators in arbitrary dimension, both with their adjoint operators. Most of these results are new and have been checked by means of computer algebra.
文摘In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar to the ones they already used for studying the Schwarzschild geometry. Of course, such a differential sequence is well known for the Minkowski metric and successively contains the Killing (order 1), the Riemann (order 2) and the Bianchi (order 1 again) operators in the linearized framework, as a particular case of the Vessiot structure equations. In all these cases, they discovered that the compatibility conditions (CC) for the corresponding Killing operator were involving a mixture of both second order and third order CC and their idea has been to exhibit only a minimal number of generating ones. Unhappily, these physicists are neither familiar with the formal theory of systems of partial differential equations and differential modules, nor with the formal theory of Lie pseudogroups. Hence, even if they discovered a link between these differential sequences and the number of parameters of the Lie group preserving the background metric, they have been unable to provide an intrinsic explanation of this fact, being limited by the technical use of Weyl spinors, complex Teukolsky scalars or Killing-Yano tensors. The purpose of this difficult computational paper is to provide differential and homological methods in order to revisit and solve these questions, not only in the previous cases but also in the specific case of any Lie group or Lie pseudogroup of transformations. These new tools, which are now available as computer algebra packages, question the mathematical foundations of GR and the origin of gravitational waves.
文摘The search for the generating compatibility conditions (CC) of a given operator is a very recent problem met in general relativity in order to study the Killing operator for various standard useful metrics. Accordingly, this paper can be considered as a natural continuation of a previous paper recently published in JMP under the title Minkowski, Schwarschild and Kerr metrics revisited. In particular, we prove that the intrinsic link existing between the lack of formal exactness of an operator sequence on the jet level, the lack of formal exactness of its corresponding symbol sequence and the lack of formal integrability (FI) of the initial operator is of a purely homological nature as it is based on the long exact connecting sequence provided by the so-called snake lemma in homological algebra. It is therefore quite difficult to grasp it in general and even more difficult to use it on explicit examples. It does not seem that any one of the results presented in this paper is known as most of the other authors who studied the above problem of computing the total number of generating CC are confusing this number with the degree of generality introduced by A. Einstein in his 1930 letters to E. Cartan. One of the motivating examples that we provide is so striking that it is even difficult to imagine that such an example could exist. We hope this paper could be used as a source of testing examples for future applications of computer algebra in general relativity and, more generally, in mathematical physics.
文摘In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differential equations. In 1970, D.C. Spencer and coworkers studied the formal theory of such systems, using methods of homological algebra that were giving rise to “differential homological algebra”, replacing unmixed polynomial ideals by “pure differential modules”. The use of “differential extension modules” and “differential double duality” is essential for such a purpose. In particular, 0-pure differential modules are torsion-free and admit an “absolute parametrization” by means of arbitrary potential like functions. In 2012, we have been able to extend this result to arbitrary pure differential modules, introducing a “relative parametrization” where the potentials should satisfy compatible “differential constraints”. We recently noticed that General Relativity is just a way to parametrize the Cauchy stress equations by means of the formal adjoint of the Ricci operator in order to obtain a “minimum parametrization” by adding sufficiently many compatible differential constraints, exactly like the Lorenz condition in electromagnetism. In order to make this difficult paper rather self-contained, these unusual purely mathematical results are illustrated by many explicit examples, two of them dealing with contact transformations, and even strengthening the comments we recently provided on the mathematical foundations of General Relativity and Gauge Theory. They also bring additional doubts on the origin and existence of gravitational waves.
文摘The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949, 1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed is equal to for any minimal parametrization, the Einstein parametrization being “in between” with potentials. We provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today, but it could be strictly impossible to obtain them without using the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new insights towards the mathematical foundations of general relativity, it is written in a rather self-contained way.
基金Project supported by the Agence Nationale de la Recherche(No.ANR-14-CE23-0012(COSMOS))the European Research Council under the European Union’s Seventh Framework Programme(FP/2007-2013)/ERC(No.614492)
文摘Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) con- servation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability.
基金The authors would like to thank L.Guillot(CEA/DAM)for insightful discussions and CEA/DAM for partial fnancial support.EB was partially supported by the EPSRC grants EP/P01576X/1 and EP/P012434/1.
文摘We devise hybrid high-order(HHO)methods for the acoustic wave equation in the time domain.We frst consider the second-order formulation in time.Using the Newmark scheme for the temporal discretization,we show that the resulting HHO-Newmark scheme is energy-conservative,and this scheme is also amenable to static condensation at each time step.We then consider the formulation of the acoustic wave equation as a frst-order system together with singly-diagonally implicit and explicit Runge-Kutta(SDIRK and ERK)schemes.HHO-SDIRK schemes are amenable to static condensation at each time step.For HHO-ERK schemes,the use of the mixed-order formulation,where the polynomial degree of the cell unknowns is one order higher than that of the face unknowns,is key to beneft from the explicit structure of the scheme.Numerical results on test cases with analytical solutions show that the methods can deliver optimal convergence rates for smooth solutions of order O(hk+1)in the H1-norm and of order O(h^(k+2))in the L^(2)-norm.Moreover,test cases on wave propagation in heterogeneous media indicate the benefts of using high-order methods.
文摘The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.
文摘We start recalling with critical eyes the mathematical methods used in gauge theory and prove that they are not coherent with continuum mechanics, in particular the analytical mechanics of rigid bodies (despite using the same group theoretical methods) and the well known couplings existing between elasticity and electromagnetism (piezzo electricity, photo elasticity, streaming birefringence). The purpose of this paper is to avoid such contradictions by using new mathematical methods coming from the formal theory of systems of partial differential equations and Lie pseudo groups. These results finally allow unifying the previous independent tentatives done by the brothers E. and F. Cosserat in 1909 for elasticity or H. Weyl in 1918 for electromagnetism by using respectively the group of rigid motions of space or the conformal group of space-time. Meanwhile we explain why the Poincaré duality scheme existing between geometry and physics has to do with homological algebra and algebraic analysis. We insist on the fact that these results could not have been obtained before 1975 as the corresponding tools were not known before.
文摘When D: E →F is a linear differential operator of order q between the sections of vector bundles over a manifold X of dimension n, it is defined by a bundle map Φ: J<sub>q</sub>(E) →F=F<sub>0</sub> that may depend, explicitly or implicitly, on constant parameters a, b, c, ... . A “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: F<sub>0</sub> →F<sub>1</sub>. When D is involutive, that is when the corresponding system R<sub>q</sub> = ker (Φ) is involutive, this procedure provides successive first order involutive operators D<sub>1</sub>, ..., D<sub>n</sub>. Though D<sub>1</sub> οD = 0 implies ad (D) οad(D<sub>1</sub>) = 0 by taking the respective adjoint operators, then ad (D) may not generate the CC of ad (D<sub>1</sub>) and measuring such “gaps” led to introduce extension modules in differential homological algebra. They may also depend on the parameters and such a situation is well known in ordinary or partial control theory. When R<sub>q</sub> is not involutive, a standard prolongation/projection (PP) procedure allows in general to find integers r, s such that the image of the projection at order q+r of the prolongation is involutive but it may highly depend on the parameters. However, sometimes the resulting system no longer depends on the parameters and the extension modules do not depend on the parameters because it is known that they do not depend on the differential sequence used for their definition. The purpose of this paper is to study the above problems for the Kerr (m, a), Schwarzschild (m, 0) and Minkowski (0, 0) parameters while computing the dimensions of the inclusions for the respective Killing operators. Other striking motivating examples are also presented.
文摘Our recent arXiv preprints and published papers on the solution of the Riemann-Lanczos and Weyl-Lanczos problems have brought our attention on the importance of revisiting the algebraic structure of the Bianchi identities in Riemannian geometry. We also discovered in the meantime that, in our first GB book of 1978, we had already used a new way for studying the compatibility conditions (CC) of an operator that may not be necessarily formally integrable (FI) in order to construct canonical formally exact differential sequences on the jet level. The purpose of this paper is to prove that the combination of these two facts clearly shows the specific importance of the Spencer operator and the Spencer δ-cohomology, totally absent from mathematical physics today. The results obtained are unavoidable because they only depend on elementary combinatorics and diagram chasing. They also provide for the first time the purely intrinsic interpretation of the respective numbers of successive first, second, third and higher order generating CC. However, if they of course agree with the linearized Killing operator over the Minkowski metric, they largely disagree with recent publications on the respective numbers of generating CC for the linearized Killing operator over the Schwarzschild and Kerr metrics. Many similar examples are illustrating these new techniques, providing in particular a few resolutions in which the orders of the successive operators may go “up and down” surprisingly, like in the conformal situation for various dimensions.
文摘In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time.
文摘In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved.