A real-time sensing of the molecular distillation process temperature by a FLUKE brand thermograph Ti50 IR FlexCam and thermography technique was realized. After completion of the molecular distillation, three propert...A real-time sensing of the molecular distillation process temperature by a FLUKE brand thermograph Ti50 IR FlexCam and thermography technique was realized. After completion of the molecular distillation, three properties of heat transport chain cuts and residues obtained in the process were estimated by Differential Scanning Calorimetry (DSC) (specific heat, enthalpy, thermal conductivity). These properties are of great importance for improving oil characterization and for future modeling and simulation of the molecular distillation process. The results show that through the method of Differential Scanning Calorimetry, profiles have been obtained from the variation of specific heat, enthalpy and thermal condutivity as a function of temperature for samples of cuts from the distillation (ASTM D-2892) and fractions of distillate and residue from the process of molecular distillation.展开更多
True Boiling Point (TBP) distillation is one of the most common experimental techniques for determination of petroleum properties. The methods for performing TBP distillation experiments are described by ASTM D2892 ...True Boiling Point (TBP) distillation is one of the most common experimental techniques for determination of petroleum properties. The methods for performing TBP distillation experiments are described by ASTM D2892 and by ASTM D5236. However, these methods are established for petroleum fractions that reach temperatures up to 565 ~C. In this work, two petroleum residues were distilled in a falling film molecular distillation prototype and the data were used to obtain the extension of the TBP curve above a temperature of 565 ~C. It was possible to extend the TBP curve of both petroleum up to temperatures close to 700 ~C with consistency and continuity in comparison to the standard curve. In addition, an amount of raw material that was been treated as residue could be reused.展开更多
文摘A real-time sensing of the molecular distillation process temperature by a FLUKE brand thermograph Ti50 IR FlexCam and thermography technique was realized. After completion of the molecular distillation, three properties of heat transport chain cuts and residues obtained in the process were estimated by Differential Scanning Calorimetry (DSC) (specific heat, enthalpy, thermal conductivity). These properties are of great importance for improving oil characterization and for future modeling and simulation of the molecular distillation process. The results show that through the method of Differential Scanning Calorimetry, profiles have been obtained from the variation of specific heat, enthalpy and thermal condutivity as a function of temperature for samples of cuts from the distillation (ASTM D-2892) and fractions of distillate and residue from the process of molecular distillation.
文摘True Boiling Point (TBP) distillation is one of the most common experimental techniques for determination of petroleum properties. The methods for performing TBP distillation experiments are described by ASTM D2892 and by ASTM D5236. However, these methods are established for petroleum fractions that reach temperatures up to 565 ~C. In this work, two petroleum residues were distilled in a falling film molecular distillation prototype and the data were used to obtain the extension of the TBP curve above a temperature of 565 ~C. It was possible to extend the TBP curve of both petroleum up to temperatures close to 700 ~C with consistency and continuity in comparison to the standard curve. In addition, an amount of raw material that was been treated as residue could be reused.