Background: There are links between physical exercise, fine particles and the prevalence of exercise-induced bronchospasm (EIB). Objective: The aim of this study was to assess the prevalence of exercise-induced bronch...Background: There are links between physical exercise, fine particles and the prevalence of exercise-induced bronchospasm (EIB). Objective: The aim of this study was to assess the prevalence of exercise-induced bronchospasm in students of sciences and techniques of physical activities and sports (STAPS) exercising in a hot, humid and relatively polluted environment. Methods: Twenty-two first-year undergraduate students, including 11 in PE and 11 in SPORT, aged 21.64 ± 1.80 years, participated in a football match. Resting spirometry was performed before and 5 minutes after the match. During the match, particulate matter (PM2.5 and PM10) was measured every 10 minutes around the football pitch. Ambient temperature and relative humidity were recorded. The diagnosis of EIB was based on a decrease in FEV1 of at least 10% after the match. If there was a decrease, the participant was considered susceptible to EIB. Results: Five subjects were positive for exercise-induced bronchospasm, a percentage of 22%. Ambient temperature and relative humidity were 34.22˚C ± 1.38˚C and 52.2% ± 4.97%, respectively. Concentrations of PM2.5 and PM10 were between 53.3 - 115.5 µg/m3 and 75.5 - 168.2 µg/m3, respectively, exceeding WHO limits. Conclusion: These results show a high incidence of exercise-induced bronchospasm in students without a history of asthma but exercising in a hot, humid and environment polluted by fine particles.展开更多
The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded micros...The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys.展开更多
Background:The COVID-19 pandemic disrupted healthcare systems globally,raising concerns about delayed cancer diagnosis and treatment.In France,transurethral resection of bladder tumors(TURBT)was prioritized in nationa...Background:The COVID-19 pandemic disrupted healthcare systems globally,raising concerns about delayed cancer diagnosis and treatment.In France,transurethral resection of bladder tumors(TURBT)was prioritized in national urology guidelines to ensure the timely management of urothelial carcinoma.This study aimed to assess the impact of care reorganization on tumor staging,recurrence,palliative care,and mortality in bladder cancer patients from the pre-pandemic through late-pandemic periods.Methods:We conducted a retrospective multicenter study including all patients who underwent TURBT with histologically confirmed urothelial carcinoma between April and December of 2019(pre-pandemic),2020(early pandemic),2021(mid-pandemic),and 2022(late pandemic)in two French institutions.TURBT indications were categorized as diagnostic,palliative,or staging.Clinical and pathological data were compared across the four periods.Statistical analyses included Chi-square tests,Estimated Annual Percentage Change(EAPC),and multivariable logistic regression adjusted for age,sex,ASA score,and center.Results:A total of 790 TURBT procedures were analyzed.The proportion of muscle-invasive bladder cancer(pT≥2)declined over time(18.7%in 2019 to 13.2%in 2022;p=0.63),while superficial tumors(pTa)increased(57.2%to 65.5%).All-cause mortality significantly decreased from 38.0%in 2019 to 22.0%in 2020,20.5%in 2021,and 19.5%in 2022(p=0.006).EAPC showed a significant annual decline in mortality(–24.3%,p=0.004).In multivariable analysis,2020,2021,and 2022 were each associated with significantly lower odds of mortality compared to 2019.Recurrence rates remained stable across all periods(p=0.93).Interhospital variation persisted in mortality and recurrence.Conclusions:Despite the pandemic,urothelial bladder cancer outcomes did not worsen through 2022.On the contrary,timely reorganization,prioritization of TURBT,and triage strategies were associated with reduced mortality and palliative care needs,highlighting the resilience of cancer care when guided by adaptive health policies.展开更多
It was long accepted that the microgranular structure of many Ferralsols was mainly related to physicochemical processes and to their mineralogical composition. It now appears, however, that this microgranular structu...It was long accepted that the microgranular structure of many Ferralsols was mainly related to physicochemical processes and to their mineralogical composition. It now appears, however, that this microgranular structure originates from the burrowing activity of termites and ants. Given its importance for the physical properties of Ferralsols, it will be necessary to study the different termite and ant species responsible for this microgranular structure and the characteristics of the burrowing activity associated with species.展开更多
As a major subunit of the exocyst complex,members of the EXO70 family have mainly been shown to play roles in cell polarity and morphogenesis in Arabidopsis,but their roles in plant endosymbiosis,such as with arbuscul...As a major subunit of the exocyst complex,members of the EXO70 family have mainly been shown to play roles in cell polarity and morphogenesis in Arabidopsis,but their roles in plant endosymbiosis,such as with arbuscular mycorrhizal fungi(AMF),have rarely been reported.Here,using knockout and overexpression lines,we show that OsEXO70L2,which encodes a divergent EXO70 protein in rice,controls the number of primary roots and is essential for large lateral root formation.Furthermore,the OsEXO70L2 mutant sr1 displayed rare internal AMF hyphaeand no arbuscules.We also found that AMF sporulation can occur in roots despite low colonization and that AMF colonization and sporulation are modulated by photoperiod and co-culture with clover.Finally,genes related to auxin homeostasis were found to be affected in the OsEXO70L2 knockout or overexpression lines,suggesting that auxin is at least partly responsible for the phenotypes.This study provides new perspectives on the role of the exocyst complex during root development and AM in rice.展开更多
The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristi...The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.展开更多
Dear Editor,Post-traumatic stress disorder(PTSD)is a major issue for military personnel,with prevalence rates between 1%and 35%in veterans^([1]),significantly higher than in the general population^([2]).Psychological ...Dear Editor,Post-traumatic stress disorder(PTSD)is a major issue for military personnel,with prevalence rates between 1%and 35%in veterans^([1]),significantly higher than in the general population^([2]).Psychological resources,particularly hope,can protect against PTSD and promote post-traumatic growth^([3]).Hope,conceptualized as both a trait and a state,contributes to well-being and resilience and is negatively associated with PTSD symptoms,representing a psychological factor while mitigating the impact of trauma by fostering resilience and adaptive coping mechanisms.展开更多
Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo...Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.展开更多
How ecological and evolutionary factors affect small mammal diversity in arid regions remains largely unknown.Here,we combined the largest phylogeny and occurrence dataset of Gerbillinae desert rodents to explore the ...How ecological and evolutionary factors affect small mammal diversity in arid regions remains largely unknown.Here,we combined the largest phylogeny and occurrence dataset of Gerbillinae desert rodents to explore the underlying factors shaping present-day distribution patterns.In particular,we analyzed the relative contributions of ecological and evolutionary factors on their species diversity using a variety of models.Additionally,we inferred the ancestral range and possible dispersal scenarios and estimated the diversification rate of Gerbillinae.We found that Gerbillinae likely originated in the Horn of Africa in the Middle Miocene and then dispersed and diversified across arid regions in northern and southern Africa and western and central Asia,forming their current distribution pattern.Multiple ecological and evolutionary factors jointly determine the spatial pattern of Gerbillinae diversity,but evolutionary factors(evolutionary time and speciation rate)and habitat filtering were the most important in explaining the spatial variation in species richness.Our study enhances the understanding of the diversity patterns of small mammals in arid regions and highlights the importance of including evolutionary factors when interpreting the mechanisms underlying large-scale species diversity patterns.展开更多
In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method....In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow.展开更多
Dry reforming of methane(DRM)over Ni-based catalysts is an economically reasonable technology for large-scale CO_(2)utilization.However,prolonged Ni sintering and carbon deposition reduce the durability and efficiency...Dry reforming of methane(DRM)over Ni-based catalysts is an economically reasonable technology for large-scale CO_(2)utilization.However,prolonged Ni sintering and carbon deposition reduce the durability and efficiency of DRM,hindering its engineering application.Herein,we propose a facile approach by combining continuous microscale coprecipitation with solid-state reactions to construct a BaAl_(2)O_(4)-overlayer-confined Ni catalyst.The 5-wt%-Ni@BaAl_(2)O_(4)catalyst exhibited advanced CO_(2)and CH_(4)conversions of 96% and 86% at 800℃ and a GHSV of 144 L g_(cat)^(-1).h^(-1).Moreover,the k_(d)-CO_(2)and k_(d)-CH_(4)of Ni@BaAl_(2)O_(4)were 0.0063 and 0.0029 h^(-1);which are approximately half and one-thirds of those of Ni/BaAl_(2)O_(4)and slightly better than those of Ni@MgAl_(2)O_(4),underscoring the versatility of the proposed synthesis protocol for constructing core-shell structures.XAS,HAADF-STEM-EDS,and CO transmission-IR characterizations confirmed the SMSI of~2-nm amorphous BaAl_(2)O_(4)-overlaid~10 nm Ni with an overall mesoporous structure.After a long-term test,the sintering and coking inhibition effects of Ni@BaAl_(2)O_(4)(10→11 nm,0.55 mgCg_(cat)^(-1).h^(-1))outperformed Ni/BaAl_(2)O_(4)(13→22 nm,1.90 mgCg_(cat)^(-1).h^(-1))and Ni@MgAl_(2)O_(4).In situ time-resolved CH4→CO_(2)transient response,DRIFTS experiments,and DFT calculations suggested that Ni@BaAl_(2)O_(4)and Ni/BaAl_(2)O_(4)followed the Mars-van Krevelen and Langmuir-Hinshelwood redox mechanisms,respectively.The functional interfacial lattice oxygen promoted the removal of C_(ads)^(*)on Ni and core-shell structure induced fast CO_(2)adsorption and CO desorption.The present study provides a facile approach for constructing a stable and active Ni-based core-shell catalyst.Furthermore,it offers novel insights into the functionalities of non-reducible spinel overlayers in the DRM process.展开更多
The reduction of CO_(2)toward CO and CH_(4)over Ni-loaded MoS_(2)-like layered nanomaterials is investigated.The mild hydrothermal synthesis induced the formation of a molybdenum oxysulfide(MoO_(x)S_(y))phase,enriched...The reduction of CO_(2)toward CO and CH_(4)over Ni-loaded MoS_(2)-like layered nanomaterials is investigated.The mild hydrothermal synthesis induced the formation of a molybdenum oxysulfide(MoO_(x)S_(y))phase,enriched with sulfur defects and multiple Mo oxidation states that favor the insertion of Ni^(2+)cations via photo-assisted precipitation.The photocatalytic tests under LED irradiation at different wavelengths from 365 to 940 nm at 250℃rendered 1%CO_(2)conversion and continuous CO production up to 0.6 mmol/(gcat h).The incorporation of Ni into the MoO_(x)S_(y)structure boosted the continuous production of CO up to 5.1 mmol/(gcat h)with a CO_(2)conversion of 3.5%.In situ spectroscopic techniques and DFT simulations showed the O-incorporated MoS_(2)structure,in addition to Ni clusters as a supported metal catalyst.The mechanistic study of the CO_(2)reduction reaction over the catalysts revealed that the reverse water-gas shift reaction is favored due to the preferential formation of carboxylic species.展开更多
We report the observation of Zeeman splitting in multiple spectral lines emitted by a laser-produced,magnetized plasma(1–3×10^(18)cm^(-3),1–15 eV)in the context of a laboratory astrophysics experiment under a c...We report the observation of Zeeman splitting in multiple spectral lines emitted by a laser-produced,magnetized plasma(1–3×10^(18)cm^(-3),1–15 eV)in the context of a laboratory astrophysics experiment under a controlled magneticfield up to 20T.Nitrogen lines(NII)in the visible range were used to diagnose the magneticfield and plasma conditions.This was performed by coupling our data with(563–574 nm)the Stark–Zeeman line-shape code PPPB.The excellent agreement between experiment and simulations paves the way for a non-intrusive experimental platform to get time-resolved measurements of the local magneticfield in laboratory plasmas.展开更多
The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This arti...The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This article presents the implementation of a double trigger condition system for NEDA,which improves the acquisition of neutrons and reduces the number of gamma rays acquired.Two independent triggers are generated in the double trigger condition system:one based on charge comparison(CC)and the other on time-of-flight(TOF).These triggers can be combined using OR and AND logic,offering four distinct trigger modes.The developed firmware is added to the previous one in the Virtex 6 field programmable gate array(FPGA)present in the system,which also includes signal processing,baseline correction,and various trigger logic blocks.The performance of the trigger system is evaluated using data from the E703 experiment performed at GANIL.The four trigger modes are applied to the same data,and a subsequent offline analysis is performed.It is shown that most of the detected neutrons are preserved with the AND mode,and the total number of gamma rays is significantly reduced.Compared with the CC trigger mode,the OR trigger mode allows increasing the selection of neutrons.In addition,it is demonstrated that if the OR mode is selected,the online CC trigger threshold can be raised without losing neutrons.展开更多
Wildfire events are increasing globally which may be partly associated with climate change,resulting in significant adverse impacts on local,regional air quality and global climate.In September 2020,a small wildfire(b...Wildfire events are increasing globally which may be partly associated with climate change,resulting in significant adverse impacts on local,regional air quality and global climate.In September 2020,a small wildfire(burned area:36.3 ha)event occurred in Souesmes(Loiret-Cher,Sologne,France),and its plume spread out over 200 km on the following day as observed by the MODIS satellite.Based on measurements at a suburban site(~50 km northwest of the fire location)in Orléans and backward trajectory analysis,young wildfire plumes were characterized.Significant increases in gaseous pollutants(CO,CH_(4),N_(2)O,VOCs,etc.)and particles(including black carbon)were found within the wildfire plumes,leading to a reduced air quality.Emission factors,defined as EF(X)=ΔX/ΔCO(where,X represents the target species),of various trace gases and black carbon within the young wildfire plumes were determined accordingly and compared with previous studies.Changes in the ambient ions(such as ammonium,sulfate,nitrate,chloride,and nitrite in the particle-and gasphase)and aerosol properties(e.g.,aerosol water content,aerosol p H)were also quantified and discussed.Moreover,we estimated the total carbon and climate-related species(e.g.,CO_(2),CH_(4),N_(2)O,and BC)emissions and compared them with fire emission inventories.Current biomass burning emission inventories have uncertainties in estimating small fire burned areas and emissions.For instance,we found that the Global Fire Assimilation System(GFAS)may underestimate emissions(e.g.,CO)of this small wildfire while other inventories(GFED and FINN)showed significant overestimation.Considering that it is the first time to record wildfire plumes in this region,related atmospheric implications are presented and discussed.展开更多
Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology i...Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology is to discover the catalysts with high selectivity and efficiency.In this work,the N_(2)-to-NH_(3)conversion on the functional MoS_(2)is fully investigated by density functional theory calculations since the layered MoS_(2)provides the ideal platform for the elaborating copies of the nitrogenase found in nature,wherein the functionalization is achieved via basal-adsorption,basal-substitution or edge-substitution of transition metal elements.Our results reveal that the edge-functionalization is a feasible strategy for the activity promotion;however,the basal-adsorption and basal-substitution separately suffer from the electrochemical instability and the NRR inefficiency.Specifically,MoS_(2)functionalized via edge W-substitution exhibits an exceptional activity.The energetically favored reaction pathway is through the distal pathway and a limiting potential is less than 0.20 V.Overall,this work escalates the rational design of the high-effective catalysts for nitrogen fixation and provides the explanation why the predicated catalyst have a good performance,paving the guidance for the experiments.展开更多
The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we re...The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we report the rational design of nanoreactors comprising hollow carbon sphere-confined PtNi bimetallic NPs(PtNi@HCS)as highly efficient catalysts for hydrogen generation via ammonia borane hydrolysis in water.Using both density functional theory calculations and molecular dynamics simulations,the effects of an active PtNi combination and the critical synergistic role of a hollow carbon shell on the molecule diffusion adsorption behaviors are explored.Kinetic isotope effects and theoretical calculations allow the clarification of the mechanism,with oxidative addition of an O-H bond of water to the catalyst surface being the rate-determining step.The remarkable catalytic activity of the PtNi@HCS nanoreactor was also utilized for successful tandem catalytic hydrogenation reactions,using in situ-generated H_(2) from ammonia borane with high efficiency.The concerted design,theoretical calculations,and experimental work presented here shed light on the rational elaboration of efficient nanocatalysts and contribute to the establishment of a circular carbon economy using green hydrogen.展开更多
Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent yea...Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent years.The primary objective of directly recycling LIBs is to efficiently recover and restore the active electrode materials and other components in the solid phase while retaining electrochemical performance.This technology's advantages over traditional pyrometallurgy and hydrometallurgy are costeffectiveness,energy efficiency,and sustainability,and it preserves the material structure and morphology and can shorten the overall recycling path.This review extensively discusses the advancements in the direct recycling of LIBs,including battery sorting,pretreatment processes,separation of cathode and anode materials,and regeneration and quality enhancement of electrode materials.It encompasses various approaches to successfully regenerate high-value electrode materials and streamlining the recovery process without compromising their electrochemical properties.Furthermore,we highlight key challenges in direct recycling when scaled from lab to industries in four perspectives:(1)battery design,(2)disassembling,(3)electrode delamination,and(4)commercialization and sustainability.Based on these challenges and changing market trends,a few strategies are discussed to aid direct recycling efforts,such as binders,electrolyte selection,and alternative battery designs;and recent transitions and technological advancements in the battery industry are presented.展开更多
In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation o...In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.展开更多
Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high s...Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II(468.57 nm), C VI(529.1 nm), and Dα(656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity,but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration.The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.展开更多
文摘Background: There are links between physical exercise, fine particles and the prevalence of exercise-induced bronchospasm (EIB). Objective: The aim of this study was to assess the prevalence of exercise-induced bronchospasm in students of sciences and techniques of physical activities and sports (STAPS) exercising in a hot, humid and relatively polluted environment. Methods: Twenty-two first-year undergraduate students, including 11 in PE and 11 in SPORT, aged 21.64 ± 1.80 years, participated in a football match. Resting spirometry was performed before and 5 minutes after the match. During the match, particulate matter (PM2.5 and PM10) was measured every 10 minutes around the football pitch. Ambient temperature and relative humidity were recorded. The diagnosis of EIB was based on a decrease in FEV1 of at least 10% after the match. If there was a decrease, the participant was considered susceptible to EIB. Results: Five subjects were positive for exercise-induced bronchospasm, a percentage of 22%. Ambient temperature and relative humidity were 34.22˚C ± 1.38˚C and 52.2% ± 4.97%, respectively. Concentrations of PM2.5 and PM10 were between 53.3 - 115.5 µg/m3 and 75.5 - 168.2 µg/m3, respectively, exceeding WHO limits. Conclusion: These results show a high incidence of exercise-induced bronchospasm in students without a history of asthma but exercising in a hot, humid and environment polluted by fine particles.
基金financially supported by National Key Research and Development Program of China(No.2022YFB 3708100)the Science Center for Gas Turbine Project,China(No.P2021-A-IV-002-001)+1 种基金the National Natural Science Foundation of China(Nos.52331005 and 52201100)the State Key Laboratory for Advanced Metals and Materials,China(No.2024-Z02).
文摘The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys.
文摘Background:The COVID-19 pandemic disrupted healthcare systems globally,raising concerns about delayed cancer diagnosis and treatment.In France,transurethral resection of bladder tumors(TURBT)was prioritized in national urology guidelines to ensure the timely management of urothelial carcinoma.This study aimed to assess the impact of care reorganization on tumor staging,recurrence,palliative care,and mortality in bladder cancer patients from the pre-pandemic through late-pandemic periods.Methods:We conducted a retrospective multicenter study including all patients who underwent TURBT with histologically confirmed urothelial carcinoma between April and December of 2019(pre-pandemic),2020(early pandemic),2021(mid-pandemic),and 2022(late pandemic)in two French institutions.TURBT indications were categorized as diagnostic,palliative,or staging.Clinical and pathological data were compared across the four periods.Statistical analyses included Chi-square tests,Estimated Annual Percentage Change(EAPC),and multivariable logistic regression adjusted for age,sex,ASA score,and center.Results:A total of 790 TURBT procedures were analyzed.The proportion of muscle-invasive bladder cancer(pT≥2)declined over time(18.7%in 2019 to 13.2%in 2022;p=0.63),while superficial tumors(pTa)increased(57.2%to 65.5%).All-cause mortality significantly decreased from 38.0%in 2019 to 22.0%in 2020,20.5%in 2021,and 19.5%in 2022(p=0.006).EAPC showed a significant annual decline in mortality(–24.3%,p=0.004).In multivariable analysis,2020,2021,and 2022 were each associated with significantly lower odds of mortality compared to 2019.Recurrence rates remained stable across all periods(p=0.93).Interhospital variation persisted in mortality and recurrence.Conclusions:Despite the pandemic,urothelial bladder cancer outcomes did not worsen through 2022.On the contrary,timely reorganization,prioritization of TURBT,and triage strategies were associated with reduced mortality and palliative care needs,highlighting the resilience of cancer care when guided by adaptive health policies.
基金financial support from the LabEx VOLTAIRE (ANR-10-LABX-100-01)the EquipEx PLANEX (ANR-11-EQPX-0036) projects。
文摘It was long accepted that the microgranular structure of many Ferralsols was mainly related to physicochemical processes and to their mineralogical composition. It now appears, however, that this microgranular structure originates from the burrowing activity of termites and ants. Given its importance for the physical properties of Ferralsols, it will be necessary to study the different termite and ant species responsible for this microgranular structure and the characteristics of the burrowing activity associated with species.
基金supported by the National Natural Science Foundation of China(32171970)the Chongqing Talent Program,China(cstc2022ycjh-bgzxm0073)+1 种基金the Natural Science Foundation of Chongqing,China(cstc2021jcyjcxtt X0004)the Rice Innovative Research Team of Chongqing Modern Agricultural Industrial Technology System,China(CQMAITS202301)。
文摘As a major subunit of the exocyst complex,members of the EXO70 family have mainly been shown to play roles in cell polarity and morphogenesis in Arabidopsis,but their roles in plant endosymbiosis,such as with arbuscular mycorrhizal fungi(AMF),have rarely been reported.Here,using knockout and overexpression lines,we show that OsEXO70L2,which encodes a divergent EXO70 protein in rice,controls the number of primary roots and is essential for large lateral root formation.Furthermore,the OsEXO70L2 mutant sr1 displayed rare internal AMF hyphaeand no arbuscules.We also found that AMF sporulation can occur in roots despite low colonization and that AMF colonization and sporulation are modulated by photoperiod and co-culture with clover.Finally,genes related to auxin homeostasis were found to be affected in the OsEXO70L2 knockout or overexpression lines,suggesting that auxin is at least partly responsible for the phenotypes.This study provides new perspectives on the role of the exocyst complex during root development and AM in rice.
基金supported by the NSFC under Grant Nos.11374315 and 12074395the Invited Scientist Program of CNRS at Ecole Polytechnique,Palaiseau,France。
文摘The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.
基金supported by the Institut de Recherche Biomédicale des Armées(Brétigny-sur-Orge,France).
文摘Dear Editor,Post-traumatic stress disorder(PTSD)is a major issue for military personnel,with prevalence rates between 1%and 35%in veterans^([1]),significantly higher than in the general population^([2]).Psychological resources,particularly hope,can protect against PTSD and promote post-traumatic growth^([3]).Hope,conceptualized as both a trait and a state,contributes to well-being and resilience and is negatively associated with PTSD symptoms,representing a psychological factor while mitigating the impact of trauma by fostering resilience and adaptive coping mechanisms.
基金supported by the Large Group Project under grant number(RGP2/473/46).
文摘Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.
基金supported by grants from the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk0205 to Lin Xia,No.2021xjkk0604 to Jilong Cheng)the National Natural Science Foundation of China(32170416 to Qisen Yang,31900325 to Jilong Cheng)+1 种基金the Joint Fund of National Natural Science Foundation of China(U2003203 to Lin Xia)the Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences(Y229YX5105 to Qisen Yang).
文摘How ecological and evolutionary factors affect small mammal diversity in arid regions remains largely unknown.Here,we combined the largest phylogeny and occurrence dataset of Gerbillinae desert rodents to explore the underlying factors shaping present-day distribution patterns.In particular,we analyzed the relative contributions of ecological and evolutionary factors on their species diversity using a variety of models.Additionally,we inferred the ancestral range and possible dispersal scenarios and estimated the diversification rate of Gerbillinae.We found that Gerbillinae likely originated in the Horn of Africa in the Middle Miocene and then dispersed and diversified across arid regions in northern and southern Africa and western and central Asia,forming their current distribution pattern.Multiple ecological and evolutionary factors jointly determine the spatial pattern of Gerbillinae diversity,but evolutionary factors(evolutionary time and speciation rate)and habitat filtering were the most important in explaining the spatial variation in species richness.Our study enhances the understanding of the diversity patterns of small mammals in arid regions and highlights the importance of including evolutionary factors when interpreting the mechanisms underlying large-scale species diversity patterns.
基金supported by the National Key R&D Program of China(2022YFB3503900)National Natural Science Foundation of China(11975303,12211530561,12305211)+2 种基金Shanghai Municipal Natural Science Foundation(20ZR1473900,21TS1400100)CAS Cooperative Research Project(121631KYSB20210017)CAS Project for Young Scientist in Basic Research(YSBR-024)。
文摘In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow.
基金financially supported by the National Natural Science Foundation of China(22378227)the National Research Foundation,Singapore,and A*STAR under its Low-Carbon Energy Research(LCER)Funding Initiative(FI)Project(U2102d2011,WBS:A-8000278-00-00)the Medium Energy X-ray Absorption Spectroscopy beamline at the Australian Synchrotron,part of ANSTO。
文摘Dry reforming of methane(DRM)over Ni-based catalysts is an economically reasonable technology for large-scale CO_(2)utilization.However,prolonged Ni sintering and carbon deposition reduce the durability and efficiency of DRM,hindering its engineering application.Herein,we propose a facile approach by combining continuous microscale coprecipitation with solid-state reactions to construct a BaAl_(2)O_(4)-overlayer-confined Ni catalyst.The 5-wt%-Ni@BaAl_(2)O_(4)catalyst exhibited advanced CO_(2)and CH_(4)conversions of 96% and 86% at 800℃ and a GHSV of 144 L g_(cat)^(-1).h^(-1).Moreover,the k_(d)-CO_(2)and k_(d)-CH_(4)of Ni@BaAl_(2)O_(4)were 0.0063 and 0.0029 h^(-1);which are approximately half and one-thirds of those of Ni/BaAl_(2)O_(4)and slightly better than those of Ni@MgAl_(2)O_(4),underscoring the versatility of the proposed synthesis protocol for constructing core-shell structures.XAS,HAADF-STEM-EDS,and CO transmission-IR characterizations confirmed the SMSI of~2-nm amorphous BaAl_(2)O_(4)-overlaid~10 nm Ni with an overall mesoporous structure.After a long-term test,the sintering and coking inhibition effects of Ni@BaAl_(2)O_(4)(10→11 nm,0.55 mgCg_(cat)^(-1).h^(-1))outperformed Ni/BaAl_(2)O_(4)(13→22 nm,1.90 mgCg_(cat)^(-1).h^(-1))and Ni@MgAl_(2)O_(4).In situ time-resolved CH4→CO_(2)transient response,DRIFTS experiments,and DFT calculations suggested that Ni@BaAl_(2)O_(4)and Ni/BaAl_(2)O_(4)followed the Mars-van Krevelen and Langmuir-Hinshelwood redox mechanisms,respectively.The functional interfacial lattice oxygen promoted the removal of C_(ads)^(*)on Ni and core-shell structure induced fast CO_(2)adsorption and CO desorption.The present study provides a facile approach for constructing a stable and active Ni-based core-shell catalyst.Furthermore,it offers novel insights into the functionalities of non-reducible spinel overlayers in the DRM process.
基金Financial support from the Spanish Ministry of Science and Universities through CEX2023-001286-S,PID2020-114926RB-I00,and CTQ2016-77144-Rthe MICINN Scholarship.
文摘The reduction of CO_(2)toward CO and CH_(4)over Ni-loaded MoS_(2)-like layered nanomaterials is investigated.The mild hydrothermal synthesis induced the formation of a molybdenum oxysulfide(MoO_(x)S_(y))phase,enriched with sulfur defects and multiple Mo oxidation states that favor the insertion of Ni^(2+)cations via photo-assisted precipitation.The photocatalytic tests under LED irradiation at different wavelengths from 365 to 940 nm at 250℃rendered 1%CO_(2)conversion and continuous CO production up to 0.6 mmol/(gcat h).The incorporation of Ni into the MoO_(x)S_(y)structure boosted the continuous production of CO up to 5.1 mmol/(gcat h)with a CO_(2)conversion of 3.5%.In situ spectroscopic techniques and DFT simulations showed the O-incorporated MoS_(2)structure,in addition to Ni clusters as a supported metal catalyst.The mechanistic study of the CO_(2)reduction reaction over the catalysts revealed that the reverse water-gas shift reaction is favored due to the preferential formation of carboxylic species.
基金supported by grants managed by l’Agence Nationale de la Recherche under the Investissements d’Avenir programs Grant Nos. ANR-18-EURE-0014, ANR-10-LABX-0039-PALM, and ANR-22-CE30-0044supported by grants from Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 23K20038)+2 种基金JSPS Core-to-Core program (Grant No. JPJSCCA20230003)carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200-EUROfusion)operated within the framework of the Enabling Research Project No. AWP24-ENR-IFE.02.CEA-01 “Magnetized ICF”
文摘We report the observation of Zeeman splitting in multiple spectral lines emitted by a laser-produced,magnetized plasma(1–3×10^(18)cm^(-3),1–15 eV)in the context of a laboratory astrophysics experiment under a controlled magneticfield up to 20T.Nitrogen lines(NII)in the visible range were used to diagnose the magneticfield and plasma conditions.This was performed by coupling our data with(563–574 nm)the Stark–Zeeman line-shape code PPPB.The excellent agreement between experiment and simulations paves the way for a non-intrusive experimental platform to get time-resolved measurements of the local magneticfield in laboratory plasmas.
基金supported by MICIU MCIN/AEI/10.13039/501100011033Spain with Grant PID2020-118265GB-C42,-C44,PRTR-C17.I01Generalitat Valenciana,Spain with Grant CIPROM/2022/54,ASFAE/2022/031,CIAPOS/2021/114 and by the EU NextGenerationEU,ESF funds.This work was also supported by the National Science Centre(NCN),Poland(Grant No.2020/39/D/ST2/00466).
文摘The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This article presents the implementation of a double trigger condition system for NEDA,which improves the acquisition of neutrons and reduces the number of gamma rays acquired.Two independent triggers are generated in the double trigger condition system:one based on charge comparison(CC)and the other on time-of-flight(TOF).These triggers can be combined using OR and AND logic,offering four distinct trigger modes.The developed firmware is added to the previous one in the Virtex 6 field programmable gate array(FPGA)present in the system,which also includes signal processing,baseline correction,and various trigger logic blocks.The performance of the trigger system is evaluated using data from the E703 experiment performed at GANIL.The four trigger modes are applied to the same data,and a subsequent offline analysis is performed.It is shown that most of the detected neutrons are preserved with the AND mode,and the total number of gamma rays is significantly reduced.Compared with the CC trigger mode,the OR trigger mode allows increasing the selection of neutrons.In addition,it is demonstrated that if the OR mode is selected,the online CC trigger threshold can be raised without losing neutrons.
基金supported by the VOLTAIRE project (ANR-10-LABX-100-01)funded by the ANR and the PIVOTS project provided by the Region Centre−Val de Loire (ARD 2020 program and CPER 2015−2020).
文摘Wildfire events are increasing globally which may be partly associated with climate change,resulting in significant adverse impacts on local,regional air quality and global climate.In September 2020,a small wildfire(burned area:36.3 ha)event occurred in Souesmes(Loiret-Cher,Sologne,France),and its plume spread out over 200 km on the following day as observed by the MODIS satellite.Based on measurements at a suburban site(~50 km northwest of the fire location)in Orléans and backward trajectory analysis,young wildfire plumes were characterized.Significant increases in gaseous pollutants(CO,CH_(4),N_(2)O,VOCs,etc.)and particles(including black carbon)were found within the wildfire plumes,leading to a reduced air quality.Emission factors,defined as EF(X)=ΔX/ΔCO(where,X represents the target species),of various trace gases and black carbon within the young wildfire plumes were determined accordingly and compared with previous studies.Changes in the ambient ions(such as ammonium,sulfate,nitrate,chloride,and nitrite in the particle-and gasphase)and aerosol properties(e.g.,aerosol water content,aerosol p H)were also quantified and discussed.Moreover,we estimated the total carbon and climate-related species(e.g.,CO_(2),CH_(4),N_(2)O,and BC)emissions and compared them with fire emission inventories.Current biomass burning emission inventories have uncertainties in estimating small fire burned areas and emissions.For instance,we found that the Global Fire Assimilation System(GFAS)may underestimate emissions(e.g.,CO)of this small wildfire while other inventories(GFED and FINN)showed significant overestimation.Considering that it is the first time to record wildfire plumes in this region,related atmospheric implications are presented and discussed.
基金financial support from the National Natural Science Foundation of China(21503097,52130101,51701152,21806023,and 51702345)China Scholarship Council(202008320215).
文摘Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology is to discover the catalysts with high selectivity and efficiency.In this work,the N_(2)-to-NH_(3)conversion on the functional MoS_(2)is fully investigated by density functional theory calculations since the layered MoS_(2)provides the ideal platform for the elaborating copies of the nitrogenase found in nature,wherein the functionalization is achieved via basal-adsorption,basal-substitution or edge-substitution of transition metal elements.Our results reveal that the edge-functionalization is a feasible strategy for the activity promotion;however,the basal-adsorption and basal-substitution separately suffer from the electrochemical instability and the NRR inefficiency.Specifically,MoS_(2)functionalized via edge W-substitution exhibits an exceptional activity.The energetically favored reaction pathway is through the distal pathway and a limiting potential is less than 0.20 V.Overall,this work escalates the rational design of the high-effective catalysts for nitrogen fixation and provides the explanation why the predicated catalyst have a good performance,paving the guidance for the experiments.
基金Financial support was received from the National Key R&D Program of China (2021YFC2902505)the start-up funding by Beijing University of Technology (Changlong Wang)。
文摘The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we report the rational design of nanoreactors comprising hollow carbon sphere-confined PtNi bimetallic NPs(PtNi@HCS)as highly efficient catalysts for hydrogen generation via ammonia borane hydrolysis in water.Using both density functional theory calculations and molecular dynamics simulations,the effects of an active PtNi combination and the critical synergistic role of a hollow carbon shell on the molecule diffusion adsorption behaviors are explored.Kinetic isotope effects and theoretical calculations allow the clarification of the mechanism,with oxidative addition of an O-H bond of water to the catalyst surface being the rate-determining step.The remarkable catalytic activity of the PtNi@HCS nanoreactor was also utilized for successful tandem catalytic hydrogenation reactions,using in situ-generated H_(2) from ammonia borane with high efficiency.The concerted design,theoretical calculations,and experimental work presented here shed light on the rational elaboration of efficient nanocatalysts and contribute to the establishment of a circular carbon economy using green hydrogen.
基金National Research Foundation Singapore and National Environment Agency Singapore,Grant/Award Number:CTRL-2023-1D-01。
文摘Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent years.The primary objective of directly recycling LIBs is to efficiently recover and restore the active electrode materials and other components in the solid phase while retaining electrochemical performance.This technology's advantages over traditional pyrometallurgy and hydrometallurgy are costeffectiveness,energy efficiency,and sustainability,and it preserves the material structure and morphology and can shorten the overall recycling path.This review extensively discusses the advancements in the direct recycling of LIBs,including battery sorting,pretreatment processes,separation of cathode and anode materials,and regeneration and quality enhancement of electrode materials.It encompasses various approaches to successfully regenerate high-value electrode materials and streamlining the recovery process without compromising their electrochemical properties.Furthermore,we highlight key challenges in direct recycling when scaled from lab to industries in four perspectives:(1)battery design,(2)disassembling,(3)electrode delamination,and(4)commercialization and sustainability.Based on these challenges and changing market trends,a few strategies are discussed to aid direct recycling efforts,such as binders,electrolyte selection,and alternative battery designs;and recent transitions and technological advancements in the battery industry are presented.
文摘In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.
基金supported in part by National Natural Science Foundation of China (Nos.12275070, 12205084, 12305236 and 11675050)in part by the National Key Research and Development Program of China (Nos. 2022YFE03180200, 2022YFE03020001 and 2019YFE03010004)Innovation Program of Southwestern Institute of Physics (No. 202301XWCX001)。
文摘Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II(468.57 nm), C VI(529.1 nm), and Dα(656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity,but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration.The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.