The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five dos...The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, 3-glucosidase, and N-a-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg^-1 soil with the highest MSW doses, compared to 4.30 g kg^-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.展开更多
Temperate fruit trees belonging to Prunus species have the ability to suspend(induce dormancy)and resume growth periodically in response to environmental and seasonal conditions.Endodormancy release requires the long-...Temperate fruit trees belonging to Prunus species have the ability to suspend(induce dormancy)and resume growth periodically in response to environmental and seasonal conditions.Endodormancy release requires the long-term accumulation of chill.Upon accumulation of cultivar-specific chill requirements,plants enter the state of ecodormancy,which means the ability to grow has been restored,depending on the fulfilment of heat requirements.As many different metabolic pathways are implicated in endodormancy release,we have performed a metabolomic analysis,using the ultra-high-performance liquid chromatography–quadrupole time-of-flying(UPLC–QToF)technique.We assayed flower buds in different stages of endodormancy in four almond cultivars with different flowering times:the extra-early Desmayo Largueta,the late Antoñeta,the extra-late Penta,and the ultra-late Tardona.An orthogonal projection to latent-structure discriminant-analysis model was created to observe differences between endodormant and ecodormant flower buds.The metabolites showing the most significant variation were searched against the Metlin,HMDB,and KEGG libraries,which allowed us to identify 87 metabolites.These metabolites were subsequently assigned to specific pathways,such as abscisic acid biosynthesis,phenylpropanoid biosynthesis,and D-sorbitol metabolism,among others.The two metabolites that exhibited the most significant variations in all the cultivars studied with fold changes of up to 6.49 were ascorbic acid and prunasin.For the first time,these two metabolites have been proposed as potential biomarkers for endodormancy release in almond.Given the high synteny present between the Rosaceae species,these results could be extrapolated to other important crops like peach,plum,cherry,or apricot,among others.展开更多
A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on ...A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil.The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.展开更多
Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contamin...Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.展开更多
A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified frag...A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between 'Monagha' and 'Sefied' almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.展开更多
An incubation experiment was designed in order to determine the further microbiological response to an addition (500 m3 ha-1) of fresh olive mill wastewater (FOMWW) in a soil that has been frequently amended with ...An incubation experiment was designed in order to determine the further microbiological response to an addition (500 m3 ha-1) of fresh olive mill wastewater (FOMWW) in a soil that has been frequently amended with uncontrolled doses of OMWW since the 1990s in an active disposal site (ADS soil). To achieve this aim, the phospholipid fatty acid (PLFA) profiles, microbial biomass C (Cmic), and dehydrogenase (DHA) and urease activities (URA) were monitored at the beginning (To), 3 h (T1) and 97 d (Tf, i.e., the end) of incubation after FOMWW addition. After the FOMWW addition, an increase in the ratio of fungal to bacterial PLFAs was observed in ADS soil. Moreover, a relative increase of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SATFA) was found in the ADS soil. An increase of the Gram-positive to Gram-negative ratio was observed in this soil at the end of the incubation. While DHA and Cmic increased in the ADS soil after FOMWW addition, URA showed a decrease. Fungi and Gram-positive bacterial biomass experienced an increase after addition of a high dose of FOMWW in laboratory conditions.展开更多
Lettuce is an important leafy vegetable that represents a significant dietary source of antioxidants and bioactive compounds.However,the levels of metabolites in different lettuce cultivars are poorly characterized.In...Lettuce is an important leafy vegetable that represents a significant dietary source of antioxidants and bioactive compounds.However,the levels of metabolites in different lettuce cultivars are poorly characterized.In this study,we used combined GC×GC-TOF/MS and UPLC-IMS-QTOF/MS to detect and relatively quantify metabolites in 30 lettuce cultivars representing large genetic diversity.Comparison with online databases,the published literature,standards as well using collision cross-section values enabled putative identification of 171 metabolites.Sixteen of these 171 metabolites(including phenolic acid derivatives,glycosylated flavonoids,and one iridoid)were present at significantly different levels in leaf and head type lettuces,which suggested the significant metabolomic variations between the leaf and head types of lettuce are related to secondary metabolism.A combination of the results and metabolic network analysis techniques suggested that leaf and head type lettuces contain not only different levels of metabolites but also have significant variations in the corresponding associated metabolic networks.The novel lettuce metabolite library and novel non-targeted metabolomics strategy devised in this study could be used to further characterize metabolic variations between lettuce cultivars or other plants.Moreover,the findings of this study provide important insight into metabolic adaptations due to natural and human selection,which could stimulate further research to potentially improve lettuce quality,yield,and nutritional value.展开更多
Biochar is considered a potential technology to enhance chemical fertilizer use efficiency through intensification of the interactions between nutrients and the functional groups on biochar surfaces.However,little is ...Biochar is considered a potential technology to enhance chemical fertilizer use efficiency through intensification of the interactions between nutrients and the functional groups on biochar surfaces.However,little is known about how the application of activated biochars mixed with urea influences nitrogen(N)mineralization and crop performance in paddy fields.Here,a sawdust-derived fresh biochar(FBC)(ca.400℃)was activated chemically with 15%hydrogen peroxide and biologically with a nutrient solution mixed with a soil inoculum to obtain a chemically activated biochar(CBC)and a biologically activated biochar(BBC),respectively.The chemical and surface properties of FBC,CBC,and BBC were evaluated using spectroscopic methods,i.e.,Fourier transform infrared spectroscopy and 13C nuclear magnetic resonance,and potentiometric charge determination.The N retention capacity of biochars and their interaction with urea hydrolysis were examined in a laboratory incubation experiment.Additionally,a field experiment was carried out in a paddy field with the biochars unmixed or mixed with urea at a 1:1 ratio.Our results showed that negative surface functional groups and negative charges were increased on both activated biochars,especially CBC.Both activated biochars contributed to a significant reduction in urea-biochar suspension pH and increased N retention in the incubation experiment.Despite the enhanced surface properties of the activated biochars,no similar increases in rice biomass and grain yield were observed for these biochars in the field experiment.However,rice biomass,grain yield,apparent N use efficiency,and agronomic N use efficiency were significantly higher with the application of the three biochars compared to no-biochar application.Altogether,the results indicate that the application of urea mixed with biochar could enhance crop performance,especially in the case of activated biochar,which would enhance N retention in the soil,reducing N loss.展开更多
Almond[Prunus dulcis Miller(D.A.Webb)]is the main tree nut species worldwide.Here,genotyping-by-sequencing(GBS)was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural R...Almond[Prunus dulcis Miller(D.A.Webb)]is the main tree nut species worldwide.Here,genotyping-by-sequencing(GBS)was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research(CREA)and the Spanish National Research Council(CSIC),leading to the detection of 93,119 single-nucleotide polymorphisms(SNPs).The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools.Data on SNP diversity and runs of homozygosity(ROHs)allowed the definition of kinship,inbreeding,and linkage disequilibrium(LD)decay in almond cultivated germplasm.Four-year phenotypic observations,gathered on 98 cultivars of the CREA collection,were used to perform a genome-wide association study(GWAS)and,for the first time in a crop species,homozygosity mapping(HM),resulting in the identification of genomic associations with nut,shell,and seed weight.Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent.Overall,this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding.In a broader perspective,our results encourage the use of ROHs in crop science to estimate inbreeding,choose parental combinations minimizing the risk of inbreeding depression,and identify genomic footprints of selection for specific traits.展开更多
Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes.However,in almond,little is known about the genetic variability in curr...Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes.However,in almond,little is known about the genetic variability in current breeding stocks,although several cases of inbreeding depression have been reported.To gain insights into the genetic structure in modern breeding programs worldwide,marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed.Inbreeding coefficients,pairwise relatedness,and genetic contribution were calculated for these genotypes.The results reveal two mainstream breeding lines based on three cultivars:“Tuono”,“Cristomorto”,and“Nonpareil”.Descendants from“Tuono”or“Cristomorto”number 76(sharing 34 descendants),while“Nonpareil”has 71 descendants.The mean inbreeding coefficient of the analyzed genotypes was 0.041,with 14 genotypes presenting a high inbreeding coefficient,over 0.250.Breeding programs from France,the USA,and Spain showed inbreeding coefficients of 0.075,0.070,and 0.037,respectively.According to their genetic contribution,modern cultivars from Israel,France,the USA,Spain,and Australia trace back to a maximum of six main founding genotypes.Among the group of 65 genotypes carrying the S f allele for self-compatibility,the mean relatedness coefficient was 0.125,with“Tuono”as the main founding genotype(24.7%of total genetic contribution).The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide.Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress.展开更多
Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the long juvenile period of trees, the influence of juvenility and the existence of climatic factors affecting the expression ...Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the long juvenile period of trees, the influence of juvenility and the existence of climatic factors affecting the expression of the trait. For these reasons, marker-assisted selection (MAS) strategies are particularly useful in these cases. The objective of this work is the analysis of alternative low- cost strategies for development of molecular markers linked to agronomic traits in Prunus including the application of modified Bulked segregant analysis (BSA) using Simple sequence repeat (SSRs) markers and the application of Random amplified polymorphism microsatellite (RAMP) markers. First BSA results showed that two SSR loci were found to be tightly linked to flowering time in almond. On the other hand, RAMP analysis has been demonstrated to be a potentially valuable molecular marker for the study of genetic relationships in Prunus. Results showed the dominant nature of these markers with a great abundance and transferability although with a reduced polymorphism. In addition, RAMP application in F1 progenies showed its suitability for molecular characterization and mapping, and later Quantitative trait loci (QTL) or BSA analysis.展开更多
Intensive agriculture contributes to a decrease in microbial biomass and crop yields, while accelerating soil degradation. Arbuscular mycorrhizae associations have direct benefits for plant nutrition, and may be consi...Intensive agriculture contributes to a decrease in microbial biomass and crop yields, while accelerating soil degradation. Arbuscular mycorrhizae associations have direct benefits for plant nutrition, and may be considered a useful tool in modem agriculture. Notwithstanding the widespread knowledge of these benefits, their use in intensive fanning systems has until now been ineffectual, because most mycorrhizal species have low tolerance toward high concentrations of nutrients and are poorly adapted to the soil and/or mycorrhizal functioning. The aim of this work was to test the efficacy of an arbuscular mycorrhizal (AM) fungus, Glomus iranicum var. tenuihypharum on lettuce and table grape crops in different intensive farming systems. The variables studied were root colonization percentage, external mycelium concentration, gas exchange, photosynthetic activity, root starch concentration and plant nutrition. The main finding was that the fungus is tolerant of a wide range of soil pH values, high salinity levels and abundant external mycelium. In lettuce, it produced significant increases in plant physiological activity and productivity (10%-15%); and in table grapes, increases of 12%-45% in yield were achieved for more than three years in Crimson variety, and significant increases in fruit cluster weight, color uniformity and Brix (~Bx). The AM species is protected by two patents and is a component of MycoUp, MycoUp Activ, Resid HC and Resid MG, whose commercial application has spread to more than 30 countries, with increments in crop yields of 8%-45% in lines as varied as leaf vegetables, berries, fruit, olives, grapes, greenhouse crops and cereals.展开更多
Phosphorus(P) limitation in the coming decades calls for the utilization of alternative fertilizers in agriculture. Struvite is a promising P source, but its potential role as a fertilizer is dependent on different ph...Phosphorus(P) limitation in the coming decades calls for the utilization of alternative fertilizers in agriculture. Struvite is a promising P source, but its potential role as a fertilizer is dependent on different physical, chemical, and biological properties, which are very heterogeneous in soil, complicating the prediction of the best soil conditions for its application. Here, we evaluated the solubility of struvite in soil, its redistribution into P fractions, and its potential abiotic and biotic drivers in 62 globally distributed soils with contrasting properties through an incubation assay. We found that after 40 d, about 35% of struvite P was redistributed into soil fractions more accessible to plants and microbes. Phosphorus redistribution from struvite was driven by a complex suite of soil physical, chemical, and microbial properties as well as environmental factors that varied across soils. Soil texture played a critical role in determining the redistribution of P in struvite-amended soils in soluble(H2O extraction), labile(NaHCO3 extraction), and moderately labile(NaOH extraction) fractions.In addition, the soil solution cation concentration was one of the most important drivers of available struvite-derived P fractions. The great importance of texture and cations in determining struvite-derived P fractions in soil was contrasted with the relatively minor role of pH. At the microbial level, the number of bacterial operational taxonomic units(OTUs) from the unfertilized soils that correlated with struvite-derived P fractions was higher than that of fungi. The number of OTUs that correlated with the struvite-derived soluble P fraction was dominated by fungi, whereas the number of OTUs that correlated with the struvite-derived labile P fraction was dominated by bacteria. Overall, this study provided a predictive framework for the potential use of struvite as a P fertilizer in contrasting soils.展开更多
Various studies have established that feedstock choice,pyrolysis temperature,and pyrolysis type influence final biochar physicochemical characteristics.However,overarching analyses of pre-biochar creation choices and ...Various studies have established that feedstock choice,pyrolysis temperature,and pyrolysis type influence final biochar physicochemical characteristics.However,overarching analyses of pre-biochar creation choices and correlations to biochar characteristics are severely lacking.Thus,the objective of this work was to help researchers,biochar-stakeholders,and practitioners make more well-informed choices in terms of how these three major parameters influence the final biochar product.Utilizing approximately 5400 peer-reviewed journal articles and over 50,800 individual data points,herein we elucidate the selections that influence final biochar physical and chemical properties,total nutrient content,and perhaps more importantly tools one can use to predict biochar’s nutrient availability.Based on the large dataset collected,it appears that pyrolysis type(fast or slow)plays a minor role in biochar physico-(inorganic)chemical characteristics;few differences were evident between production styles.Pyrolysis temperature,however,affects biochar’s longevity,with pyrolysis temperatures>500℃ generally leading to longer-term(i.e.,>1000 years)half-lives.Greater pyrolysis temperatures also led to biochars containing greater overall C and specific surface area(SSA),which could promote soil physico-chemical improvements.However,based on the collected data,it appears that feedstock selection has the largest influence on biochar properties.Specific surface area is greatest in wood-based biochars,which in combination with pyrolysis temperature could likely promote greater changes in soil physical characteristics over other feedstock-based biochars.Crop-and other grass-based biochars appear to have cation exchange capacities greater than other biochars,which in combination with pyrolysis temperature could potentially lead to longer-term changes in soil nutrient retention.The collected data also suggest that one can reasonably predict the availability of various biochar nutrients(e.g.,N,P,K,Ca,Mg,Fe,and Cu)based on feedstock choice and total nutrient content.Results can be used to create designer biochars to help solve environmental issues and supply a variety of plant-available nutrients for crop growth.展开更多
Tomato production is influenced by shoot branching,which is controlled by different hormones.Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2(CKX2).CKX2-overexpressing(...Tomato production is influenced by shoot branching,which is controlled by different hormones.Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2(CKX2).CKX2-overexpressing(CKX2-OE)plants showed an excessive growth of axillary shoots,the opposite phenotype expected for plants with reduced cytokinin content,as evidenced by LC-MS analysis and ARR5-GUS staining.The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR(LS).Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals.Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE(CCD7-AS)produced an additive phenotype,indicating independent effects of cytokinin and strigolactones on increased branching.On the other hand,CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants.Accordingly,CKX2-OE basal buds did not respond to auxin applied in the decapitated apex.Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.展开更多
Meta-analyses show an overall decrease in soil N_(2)O emissions after biochar(BC)amendment.Nonetheless,N_(2)O mitigation with BC cannot be extrapolated to every BC-soil combination,inasmuch as an increase in soil N_(2...Meta-analyses show an overall decrease in soil N_(2)O emissions after biochar(BC)amendment.Nonetheless,N_(2)O mitigation with BC cannot be extrapolated to every BC-soil combination,inasmuch as an increase in soil N_(2)O release has been occasionally reported.We hypothesized that BC characteristics are key,and performed two microcosm experiments to advance in the understanding of the properties associated.We first investigated how 22 well-characterized BCs affect N_(2)O emissions in a calcareous soil under denitrification conditions.Whereas most BCs decreased N_(2)O emissions,some substantially increased N_(2)O emissions.In a second experiment,we selected and further characterized eight of the 22 previous BCs.We applied the^(15)N-gas-flux method to study how these BCs affect denitrification products(N_(2)O and N_(2))in the same soil.Results indicate that the interaction between BC and the denitrification process depends on the temperature of pyrolysis.Whereas BCs produced at 400℃tended to increase total denitrification(N_(2)O+N_(2))by an average of 28%,BCs produced at 600℃significantly reduced total denitrification by 53%.Nevertheless,this decline in overall denitrification did not result in a decrease of N_(2)O emissions,as there was a strong shift in the N_(2)O/(N_(2)+N_(2)O)ratio favoring N_(2)O.A redundancy analysis revealed a direct correlation between carboxylic groups on BCs surface and N_(2)O emissions.This research enhances our understanding of the interaction of BC with denitrification,particularly concerning the relevance of the temperature of pyrolysis,and opens up new paths for investigation,crucial for optimizing the application of BCs in different soil environments.展开更多
Dear Editor, Phytohormones have been described as essential regula- tors of various processes throughout plant life, forming a strong interactive network. Because of this important func- tion, they are central and in...Dear Editor, Phytohormones have been described as essential regula- tors of various processes throughout plant life, forming a strong interactive network. Because of this important func- tion, they are central and integrative modulators form- ing a physiological key interface between plant responses and primary parameters such as genotype, environmental conditions, and developmental status. Consequently, the determination of the phytohormone signature as a key physiological parameter is necessary to understand the correlations between genotype and phenotype, as well as the influence of exogenous modulations on the phenotype (Yin et al., 2004). Thus, evaluation of the phytohormone signature has to be considered for physiological phenotyp- ing, especially for the improvement of crops or developing strategies for plant protection. This includes the important trait plant immunity, which is determined also by distinct and fine-tuned modulations of phytohormones (Robert- Seilaniantz et al., 2011).展开更多
基金Project supported by the EU and the Spanish Ministry of Science and Technology.
文摘The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, 3-glucosidase, and N-a-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg^-1 soil with the highest MSW doses, compared to 4.30 g kg^-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.
文摘Temperate fruit trees belonging to Prunus species have the ability to suspend(induce dormancy)and resume growth periodically in response to environmental and seasonal conditions.Endodormancy release requires the long-term accumulation of chill.Upon accumulation of cultivar-specific chill requirements,plants enter the state of ecodormancy,which means the ability to grow has been restored,depending on the fulfilment of heat requirements.As many different metabolic pathways are implicated in endodormancy release,we have performed a metabolomic analysis,using the ultra-high-performance liquid chromatography–quadrupole time-of-flying(UPLC–QToF)technique.We assayed flower buds in different stages of endodormancy in four almond cultivars with different flowering times:the extra-early Desmayo Largueta,the late Antoñeta,the extra-late Penta,and the ultra-late Tardona.An orthogonal projection to latent-structure discriminant-analysis model was created to observe differences between endodormant and ecodormant flower buds.The metabolites showing the most significant variation were searched against the Metlin,HMDB,and KEGG libraries,which allowed us to identify 87 metabolites.These metabolites were subsequently assigned to specific pathways,such as abscisic acid biosynthesis,phenylpropanoid biosynthesis,and D-sorbitol metabolism,among others.The two metabolites that exhibited the most significant variations in all the cultivars studied with fold changes of up to 6.49 were ascorbic acid and prunasin.For the first time,these two metabolites have been proposed as potential biomarkers for endodormancy release in almond.Given the high synteny present between the Rosaceae species,these results could be extrapolated to other important crops like peach,plum,cherry,or apricot,among others.
基金Supported by the Spanish Ministry of Science and Innovation (No. CTM 2007-60061)the CSIC-I3P fellowship from the Council of Scientific Research (CSIC) of Spain
文摘A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil.The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.
基金Supported by the JAE-Program for Ph.D. Students of Spanish Research Council
文摘Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.
文摘A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between 'Monagha' and 'Sefied' almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.
基金Supported by the European Union's LIFE Programme PROSODOL (No. LIFE07 ENV/GR/000280)
文摘An incubation experiment was designed in order to determine the further microbiological response to an addition (500 m3 ha-1) of fresh olive mill wastewater (FOMWW) in a soil that has been frequently amended with uncontrolled doses of OMWW since the 1990s in an active disposal site (ADS soil). To achieve this aim, the phospholipid fatty acid (PLFA) profiles, microbial biomass C (Cmic), and dehydrogenase (DHA) and urease activities (URA) were monitored at the beginning (To), 3 h (T1) and 97 d (Tf, i.e., the end) of incubation after FOMWW addition. After the FOMWW addition, an increase in the ratio of fungal to bacterial PLFAs was observed in ADS soil. Moreover, a relative increase of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SATFA) was found in the ADS soil. An increase of the Gram-positive to Gram-negative ratio was observed in this soil at the end of the incubation. While DHA and Cmic increased in the ADS soil after FOMWW addition, URA showed a decrease. Fungi and Gram-positive bacterial biomass experienced an increase after addition of a high dose of FOMWW in laboratory conditions.
基金This work was supported by the National Natural Science Foundation of China(No.61233006)the Seed Industry Development Project of Shanghai,China(Grant No.2016,1-8)+1 种基金Shanghai Agriculture Applied Technology Development Program,China(Grant No.20170304)X.Y.was supported by the State Scholarship Fund of China Scholarship Council(No.201706230173).
文摘Lettuce is an important leafy vegetable that represents a significant dietary source of antioxidants and bioactive compounds.However,the levels of metabolites in different lettuce cultivars are poorly characterized.In this study,we used combined GC×GC-TOF/MS and UPLC-IMS-QTOF/MS to detect and relatively quantify metabolites in 30 lettuce cultivars representing large genetic diversity.Comparison with online databases,the published literature,standards as well using collision cross-section values enabled putative identification of 171 metabolites.Sixteen of these 171 metabolites(including phenolic acid derivatives,glycosylated flavonoids,and one iridoid)were present at significantly different levels in leaf and head type lettuces,which suggested the significant metabolomic variations between the leaf and head types of lettuce are related to secondary metabolism.A combination of the results and metabolic network analysis techniques suggested that leaf and head type lettuces contain not only different levels of metabolites but also have significant variations in the corresponding associated metabolic networks.The novel lettuce metabolite library and novel non-targeted metabolomics strategy devised in this study could be used to further characterize metabolic variations between lettuce cultivars or other plants.Moreover,the findings of this study provide important insight into metabolic adaptations due to natural and human selection,which could stimulate further research to potentially improve lettuce quality,yield,and nutritional value.
基金grateful to the Ministry of Education,Bangladesh for funding the current work with a project(No.LS2018770)the financial support for chemical analysis provided by Spanish Ministry of Science,Innovation and Universities,Spain and the European Regional Development Fund from the European Union(EU FEDER)(No.RTI2018-099417-B-I00)thankful for receiving a fund from the Kubota Consultancy,The Netherlands(No.3710473400-2).
文摘Biochar is considered a potential technology to enhance chemical fertilizer use efficiency through intensification of the interactions between nutrients and the functional groups on biochar surfaces.However,little is known about how the application of activated biochars mixed with urea influences nitrogen(N)mineralization and crop performance in paddy fields.Here,a sawdust-derived fresh biochar(FBC)(ca.400℃)was activated chemically with 15%hydrogen peroxide and biologically with a nutrient solution mixed with a soil inoculum to obtain a chemically activated biochar(CBC)and a biologically activated biochar(BBC),respectively.The chemical and surface properties of FBC,CBC,and BBC were evaluated using spectroscopic methods,i.e.,Fourier transform infrared spectroscopy and 13C nuclear magnetic resonance,and potentiometric charge determination.The N retention capacity of biochars and their interaction with urea hydrolysis were examined in a laboratory incubation experiment.Additionally,a field experiment was carried out in a paddy field with the biochars unmixed or mixed with urea at a 1:1 ratio.Our results showed that negative surface functional groups and negative charges were increased on both activated biochars,especially CBC.Both activated biochars contributed to a significant reduction in urea-biochar suspension pH and increased N retention in the incubation experiment.Despite the enhanced surface properties of the activated biochars,no similar increases in rice biomass and grain yield were observed for these biochars in the field experiment.However,rice biomass,grain yield,apparent N use efficiency,and agronomic N use efficiency were significantly higher with the application of the three biochars compared to no-biochar application.Altogether,the results indicate that the application of urea mixed with biochar could enhance crop performance,especially in the case of activated biochar,which would enhance N retention in the soil,reducing N loss.
文摘Almond[Prunus dulcis Miller(D.A.Webb)]is the main tree nut species worldwide.Here,genotyping-by-sequencing(GBS)was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research(CREA)and the Spanish National Research Council(CSIC),leading to the detection of 93,119 single-nucleotide polymorphisms(SNPs).The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools.Data on SNP diversity and runs of homozygosity(ROHs)allowed the definition of kinship,inbreeding,and linkage disequilibrium(LD)decay in almond cultivated germplasm.Four-year phenotypic observations,gathered on 98 cultivars of the CREA collection,were used to perform a genome-wide association study(GWAS)and,for the first time in a crop species,homozygosity mapping(HM),resulting in the identification of genomic associations with nut,shell,and seed weight.Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent.Overall,this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding.In a broader perspective,our results encourage the use of ROHs in crop science to estimate inbreeding,choose parental combinations minimizing the risk of inbreeding depression,and identify genomic footprints of selection for specific traits.
基金This research was supported in part by grants from the Ministry of Economy and Competitiveness MINECO/FEDER Projects RTA 2017-00084-00-00 and CERCA Program Generalitat of Catalonia.
文摘Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes.However,in almond,little is known about the genetic variability in current breeding stocks,although several cases of inbreeding depression have been reported.To gain insights into the genetic structure in modern breeding programs worldwide,marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed.Inbreeding coefficients,pairwise relatedness,and genetic contribution were calculated for these genotypes.The results reveal two mainstream breeding lines based on three cultivars:“Tuono”,“Cristomorto”,and“Nonpareil”.Descendants from“Tuono”or“Cristomorto”number 76(sharing 34 descendants),while“Nonpareil”has 71 descendants.The mean inbreeding coefficient of the analyzed genotypes was 0.041,with 14 genotypes presenting a high inbreeding coefficient,over 0.250.Breeding programs from France,the USA,and Spain showed inbreeding coefficients of 0.075,0.070,and 0.037,respectively.According to their genetic contribution,modern cultivars from Israel,France,the USA,Spain,and Australia trace back to a maximum of six main founding genotypes.Among the group of 65 genotypes carrying the S f allele for self-compatibility,the mean relatedness coefficient was 0.125,with“Tuono”as the main founding genotype(24.7%of total genetic contribution).The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide.Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress.
文摘Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the long juvenile period of trees, the influence of juvenility and the existence of climatic factors affecting the expression of the trait. For these reasons, marker-assisted selection (MAS) strategies are particularly useful in these cases. The objective of this work is the analysis of alternative low- cost strategies for development of molecular markers linked to agronomic traits in Prunus including the application of modified Bulked segregant analysis (BSA) using Simple sequence repeat (SSRs) markers and the application of Random amplified polymorphism microsatellite (RAMP) markers. First BSA results showed that two SSR loci were found to be tightly linked to flowering time in almond. On the other hand, RAMP analysis has been demonstrated to be a potentially valuable molecular marker for the study of genetic relationships in Prunus. Results showed the dominant nature of these markers with a great abundance and transferability although with a reduced polymorphism. In addition, RAMP application in F1 progenies showed its suitability for molecular characterization and mapping, and later Quantitative trait loci (QTL) or BSA analysis.
文摘Intensive agriculture contributes to a decrease in microbial biomass and crop yields, while accelerating soil degradation. Arbuscular mycorrhizae associations have direct benefits for plant nutrition, and may be considered a useful tool in modem agriculture. Notwithstanding the widespread knowledge of these benefits, their use in intensive fanning systems has until now been ineffectual, because most mycorrhizal species have low tolerance toward high concentrations of nutrients and are poorly adapted to the soil and/or mycorrhizal functioning. The aim of this work was to test the efficacy of an arbuscular mycorrhizal (AM) fungus, Glomus iranicum var. tenuihypharum on lettuce and table grape crops in different intensive farming systems. The variables studied were root colonization percentage, external mycelium concentration, gas exchange, photosynthetic activity, root starch concentration and plant nutrition. The main finding was that the fungus is tolerant of a wide range of soil pH values, high salinity levels and abundant external mycelium. In lettuce, it produced significant increases in plant physiological activity and productivity (10%-15%); and in table grapes, increases of 12%-45% in yield were achieved for more than three years in Crimson variety, and significant increases in fruit cluster weight, color uniformity and Brix (~Bx). The AM species is protected by two patents and is a component of MycoUp, MycoUp Activ, Resid HC and Resid MG, whose commercial application has spread to more than 30 countries, with increments in crop yields of 8%-45% in lines as varied as leaf vegetables, berries, fruit, olives, grapes, greenhouse crops and cereals.
基金the financial support by the Fundacion General CSIC, Spain (Programa ComFuturo)the project PID2020114942RB-I00 funded by MCIN/AEI//10.13039/5011000 11033+3 种基金supported by a project from the Spanish Ministry of Science and Innovation (No. PID2020-115813RA-I00)a project of the Fondo Europeo de Desarrollo Regional (FEDER)the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático “01— Refuerzo de la investigación, el desarrollo tecnológico y la innovación”, ANDABIOMA, No. P20_00879)supported by a postdoctoral scholarship as part of the FCT-funded project “Soil Ecosystems in the XXI Century: Drivers, Conservation and Future Scenarios” (No. FCT-PTDC/BIACBI/2340/2020) led by IPVC, Portugal。
文摘Phosphorus(P) limitation in the coming decades calls for the utilization of alternative fertilizers in agriculture. Struvite is a promising P source, but its potential role as a fertilizer is dependent on different physical, chemical, and biological properties, which are very heterogeneous in soil, complicating the prediction of the best soil conditions for its application. Here, we evaluated the solubility of struvite in soil, its redistribution into P fractions, and its potential abiotic and biotic drivers in 62 globally distributed soils with contrasting properties through an incubation assay. We found that after 40 d, about 35% of struvite P was redistributed into soil fractions more accessible to plants and microbes. Phosphorus redistribution from struvite was driven by a complex suite of soil physical, chemical, and microbial properties as well as environmental factors that varied across soils. Soil texture played a critical role in determining the redistribution of P in struvite-amended soils in soluble(H2O extraction), labile(NaHCO3 extraction), and moderately labile(NaOH extraction) fractions.In addition, the soil solution cation concentration was one of the most important drivers of available struvite-derived P fractions. The great importance of texture and cations in determining struvite-derived P fractions in soil was contrasted with the relatively minor role of pH. At the microbial level, the number of bacterial operational taxonomic units(OTUs) from the unfertilized soils that correlated with struvite-derived P fractions was higher than that of fungi. The number of OTUs that correlated with the struvite-derived soluble P fraction was dominated by fungi, whereas the number of OTUs that correlated with the struvite-derived labile P fraction was dominated by bacteria. Overall, this study provided a predictive framework for the potential use of struvite as a P fertilizer in contrasting soils.
基金This work was partially supported by the USDA/NIFA Interagency Climate Change Grant Proposal number 2014-02114[Project number 6657-12130-002-08I,Accession number 1003011]under the Multi-Partner Call on Agricultural Greenhouse Gas Research of the FACCE-Joint Program Initiative.The German BLE and FACCE-JPI funded the German participants of the“DesignerChar4Food”(D4F)project(CK:Project No.2814ERA01A,NW-M:Project No.2814ERA02A)the Spanish colleagues(JME and TFM)were funded by FACCE-CSA no 276610/MIT04-DESIGN-UPVASC and IT-932-16,MLC thanks the Spanish Ministry of Science,Innovation and Universities,project#RTI2018-099417-B-I00+3 种基金cofinanced with EU FEDER funds and US colleagues(JN,JI and KS)were funded by The USDA-National Institute of Food and Agriculture(Project#2014-35615-21971)USDA-ARS CHARnet and GRACENet programs–D4F greatly stimulated discussions.Any opinions,findings,or recommendation expressed in this publication are those of the authors and do not necessarily reflect the view of the USDAThis work was also partially supported by the National Natural Science Foundation of China under a Grant number of 41501339,21677119,21277115,41301551,21407123,Jiangsu Province Science Foundation for Youths under a grant number of BK20140468,sponsored by Qing Lan ProjectOpen access funding provided by Natural Resources Institute Finland(LUKE).
文摘Various studies have established that feedstock choice,pyrolysis temperature,and pyrolysis type influence final biochar physicochemical characteristics.However,overarching analyses of pre-biochar creation choices and correlations to biochar characteristics are severely lacking.Thus,the objective of this work was to help researchers,biochar-stakeholders,and practitioners make more well-informed choices in terms of how these three major parameters influence the final biochar product.Utilizing approximately 5400 peer-reviewed journal articles and over 50,800 individual data points,herein we elucidate the selections that influence final biochar physical and chemical properties,total nutrient content,and perhaps more importantly tools one can use to predict biochar’s nutrient availability.Based on the large dataset collected,it appears that pyrolysis type(fast or slow)plays a minor role in biochar physico-(inorganic)chemical characteristics;few differences were evident between production styles.Pyrolysis temperature,however,affects biochar’s longevity,with pyrolysis temperatures>500℃ generally leading to longer-term(i.e.,>1000 years)half-lives.Greater pyrolysis temperatures also led to biochars containing greater overall C and specific surface area(SSA),which could promote soil physico-chemical improvements.However,based on the collected data,it appears that feedstock selection has the largest influence on biochar properties.Specific surface area is greatest in wood-based biochars,which in combination with pyrolysis temperature could likely promote greater changes in soil physical characteristics over other feedstock-based biochars.Crop-and other grass-based biochars appear to have cation exchange capacities greater than other biochars,which in combination with pyrolysis temperature could potentially lead to longer-term changes in soil nutrient retention.The collected data also suggest that one can reasonably predict the availability of various biochar nutrients(e.g.,N,P,K,Ca,Mg,Fe,and Cu)based on feedstock choice and total nutrient content.Results can be used to create designer biochars to help solve environmental issues and supply a variety of plant-available nutrients for crop growth.
基金L.E.P.received a PhD scholarship(2004/15268-0)and a postdoctoral fellowship(2014/16553-1)from Sao Paulo State Research Foundation(FAPE SP).L.E.P.PA.F.received fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(306518/2018-0 and 302710/2017-5)+3 种基金This work was partially supported by a FAPESP grant(No.2015/50220-2)AZ was partly funded by a grant(RED-00053-16)fromFoundation for Research Assistance of the Minas Gerais State(FAPEMIG,Brazil)a CAPES/Alexander von Humboldt Foundation Experienced Researcher Fellowship(88881.472837/2019-01).
文摘Tomato production is influenced by shoot branching,which is controlled by different hormones.Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2(CKX2).CKX2-overexpressing(CKX2-OE)plants showed an excessive growth of axillary shoots,the opposite phenotype expected for plants with reduced cytokinin content,as evidenced by LC-MS analysis and ARR5-GUS staining.The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR(LS).Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals.Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE(CCD7-AS)produced an additive phenotype,indicating independent effects of cytokinin and strigolactones on increased branching.On the other hand,CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants.Accordingly,CKX2-OE basal buds did not respond to auxin applied in the decapitated apex.Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.
基金the CRUE-CSIC agreement with Springer Nature.Public competitive calls PID2021-128896OB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033/and ERDF A way of making Europe and project Nº201840I127 from CSIC.
文摘Meta-analyses show an overall decrease in soil N_(2)O emissions after biochar(BC)amendment.Nonetheless,N_(2)O mitigation with BC cannot be extrapolated to every BC-soil combination,inasmuch as an increase in soil N_(2)O release has been occasionally reported.We hypothesized that BC characteristics are key,and performed two microcosm experiments to advance in the understanding of the properties associated.We first investigated how 22 well-characterized BCs affect N_(2)O emissions in a calcareous soil under denitrification conditions.Whereas most BCs decreased N_(2)O emissions,some substantially increased N_(2)O emissions.In a second experiment,we selected and further characterized eight of the 22 previous BCs.We applied the^(15)N-gas-flux method to study how these BCs affect denitrification products(N_(2)O and N_(2))in the same soil.Results indicate that the interaction between BC and the denitrification process depends on the temperature of pyrolysis.Whereas BCs produced at 400℃tended to increase total denitrification(N_(2)O+N_(2))by an average of 28%,BCs produced at 600℃significantly reduced total denitrification by 53%.Nevertheless,this decline in overall denitrification did not result in a decrease of N_(2)O emissions,as there was a strong shift in the N_(2)O/(N_(2)+N_(2)O)ratio favoring N_(2)O.A redundancy analysis revealed a direct correlation between carboxylic groups on BCs surface and N_(2)O emissions.This research enhances our understanding of the interaction of BC with denitrification,particularly concerning the relevance of the temperature of pyrolysis,and opens up new paths for investigation,crucial for optimizing the application of BCs in different soil environments.
文摘Dear Editor, Phytohormones have been described as essential regula- tors of various processes throughout plant life, forming a strong interactive network. Because of this important func- tion, they are central and integrative modulators form- ing a physiological key interface between plant responses and primary parameters such as genotype, environmental conditions, and developmental status. Consequently, the determination of the phytohormone signature as a key physiological parameter is necessary to understand the correlations between genotype and phenotype, as well as the influence of exogenous modulations on the phenotype (Yin et al., 2004). Thus, evaluation of the phytohormone signature has to be considered for physiological phenotyp- ing, especially for the improvement of crops or developing strategies for plant protection. This includes the important trait plant immunity, which is determined also by distinct and fine-tuned modulations of phytohormones (Robert- Seilaniantz et al., 2011).