Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-at...Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design.展开更多
Liquefaction is one of the prominent factors leading to damage to soil and structures.In this study,the rela-tionship between liquefaction potential and soil parameters is determined by applying feature importance met...Liquefaction is one of the prominent factors leading to damage to soil and structures.In this study,the rela-tionship between liquefaction potential and soil parameters is determined by applying feature importance methods to Random Forest(RF),Logistic Regression(LR),Multilayer Perceptron(MLP),Support Vector Machine(SVM)and eXtreme Gradient Boosting(XGBoost)algorithms.Feature importance methods consist of permuta-tion and Shapley Additive exPlanations(SHAP)importances along with the used model’s built-in feature importance method if it exists.These suggested approaches incorporate an extensive dataset of geotechnical parameters,historical liquefaction events,and soil properties.The feature set comprises 18 parameters that are gathered from 161 field cases.Algorithms are used to determine the optimum performance feature set.Compared to other approaches,the study assesses how well these algorithms predict soil liquefaction potential.Early findings show that the algorithms perform well,demonstrating their capacity to identify non-linear connections and improve prediction accuracy.Among the feature set,σ,v(psf),MSF,CSRσ,v,FC%,Vs*,40f t(f ps)and N1,60,CS are the ones that have the highest deterministic power on the result.The study’s contribution is that,in the absence of extensive data for liquefaction assessment,the proposed method estimates the liquefaction potential using five parameters with promising accuracy.展开更多
Despite extensive research on computational geomechanics and fluid dynamics,accurately simulating convection-diffusion(CD)processes in complex fractured systems remains a significant challenge.This study develops a 3D...Despite extensive research on computational geomechanics and fluid dynamics,accurately simulating convection-diffusion(CD)processes in complex fractured systems remains a significant challenge.This study develops a 3D numerical framework for modelling CD processes in fractured geological media.The framework integrates Darcy's law and Fick's law,considering flux interactions between the matrix and fractures.The meshing strategy generates high-quality grids even in scenarios involving intersecting fractures.Then,a unified numerical scheme for solving the CD system is proposed.The novelties of this work include:(1)The proposed framework enables effective simulation of 3D fractured media,including more complex fractured vuggy media;(2)The numerical method precisely discretizes the CD terms in governing equations;(3)A Non-Orthogonal Correction(NOC)method,combined with an adaptive time integration scheme,is proposed for eliminating errors induced by skewed grids;and(4)The effects of fracture patterns and heterogeneity on flow are thoroughly analysed.The proposed method is validated through benchmark tests,demonstrating the superiority of the NOC method compared to classical methods.Further analysis reveals the evolution characteristics of pressure and concentration,offering insights into the effects of fracture patterns and heterogeneity on flow and diffusion processes.展开更多
Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects...Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects of temperature(i.e.,1500,1550,and 1600℃)and slag composition on the dissolution time of CA_(2)particles are investigated,along with the time dependency of the projection area of the particle during the dissolution process.It is found that the dissolution rate was enhanced by either an increase in temperature or a decrease in slag viscosity.Moreover,a higher ratio of CaO/Al_(2)O_(3)(C/A)leads to an increased dissolution rate of CA_(2)particle at 1600℃.Thermodynamic calculations suggested the dissolution product,i.e.,melilite,formed on the surface of the CA_(2)particle during dissolution in slag with a C/A ratio of 3.8 at 1550℃.Scanning electron microscopy equipped with energy dispersive X-ray spectrometry analysis of as-quenched samples confirmed the dissolution path of CA_(2)particles in slags with C/A ratios of 1.8 and 3.8 as well as the melilite formed on the surface of CA_(2)particle.The formation of this layer during the dissolution process was identified as a hindrance,impeding the dissolution of CA_(2)particle.A valuable reference for designing or/and choosing the composition of top slag for clean steel production is provided,especially using calcium treatment during the secondary refining process.展开更多
I.INTRODUCTION Since the 1970s, the study of stimulated emission of CdS and other Ⅱ--Ⅵ compound semiconductors has speeded up the development of the study of highly excited semiconductors. It was shown that the ex-e...I.INTRODUCTION Since the 1970s, the study of stimulated emission of CdS and other Ⅱ--Ⅵ compound semiconductors has speeded up the development of the study of highly excited semiconductors. It was shown that the ex-el scattering induces the main recombination process that yields high gain above 100 K both experimentally and theoretically. The results obtained so far concern mainly the stimulated emission, and most of the efforts are devoted to the temperature dependence of emission spectra. Only a few works are concerning the dynamics of the luminescence due to scattering.展开更多
This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75...This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75:25,80:20 and 85:15 wt.%.Supports were initially characterized by XRD,SEM and electrical conductivity(using vacuum and oxygen atmospheres),to determine the composition,microstructural and ionic-electronic conductivity properties.Later,supports were infiltrated with an eutectic carbonates mixture,producing the corresponding dense dual-phase membranes,in which CO_(2)permeation tests were conducted.Here,CO_(2)permeation experiments were performed from 900 to 700℃,in the presence and absence of oxygen(flowed in the sweep membrane side).Results showed that these composites possess high CO_(2)permeation properties,where the O_(2)addition significantly improves the ionic conduction on the sweep membrane side.Specifically,the GC80-LN20 composition presented the best results due to the following physicochemical characteristics:high electronic and ionic conductivity,appropriate porosity,interconnected porous channels,as well as thermal and chemical stabilities between the composite support and carbonate phases.展开更多
The recovery of yttrium is proposed by applying a solid-liquid extraction process using di-2-ethyl hexylphosphoric acid(D2EHPA) as extracting agent.The extracting agents were supported on a macro porous polymeric resi...The recovery of yttrium is proposed by applying a solid-liquid extraction process using di-2-ethyl hexylphosphoric acid(D2EHPA) as extracting agent.The extracting agents were supported on a macro porous polymeric resin XAD-7(solid phase).Yttrium ions extraction and discharge tests were performed,firstly from a synthetic aqueous solution of 100 mg/L Y(liquid phase) at 25℃ with stirring.The effects of pH of aqueous solutions bearing yttrium,volume fraction of extracting agents and the solid/liquid(S/L)ratio on the yttrium recovery were studied.The most favorable conditions for yttrium ions extraction are;20 vol% D_(2)EHPA functionalized resin,pH=1.5 and an S/L ratio of 10 mg/mL The discharge of yttrium ions was done under the same conditions of extraction stage,using a 2 mol/L [H_(2)SO_(4)] as stripping solution.Up to 80% yttrium is extracted,while 75% yttrium is recovered in the striping solution.In all experiments,the reaction equilibrium is reached after 20 min,and the kinetics for the extraction stage was determined as a second-order model.Also,experiments were carried out to discharge the yttriumloaded resins,and it has been determined that the best pH value to strip the Y ions is 1.5.Cyclic tests of extraction and discharge for yttrium ions show that the functionalized resin can work at least five cycles without decreasing its efficiency.Finally,the proposed process was tested in a real solution with Y ions fro m a waste fluorescent la mp powder leached in H_(2)SO_(4),demonstrating the ability to effectively recover yttrium,separating it from various metals from the studied residue.展开更多
Risk assessment is a crucial component of collision warning and avoidance systems for intelligent vehicles.Reachability-based formal approaches have been developed to ensure driving safety to accurately detect potenti...Risk assessment is a crucial component of collision warning and avoidance systems for intelligent vehicles.Reachability-based formal approaches have been developed to ensure driving safety to accurately detect potential vehicle collisions.However,they suffer from over-conservatism,potentially resulting in false–positive risk events in complicated real-world applications.In this paper,we combine two reachability analysis techniques,a backward reachable set(BRS)and a stochastic forward reachable set(FRS),and propose an integrated probabilistic collision–detection framework for highway driving.Within this framework,we can first use a BRS to formally check whether a two-vehicle interaction is safe;otherwise,a prediction-based stochastic FRS is employed to estimate the collision probability at each future time step.Thus,the framework can not only identify non-risky events with guaranteed safety but also provide accurate collision risk estimation in safety-critical events.To construct the stochastic FRS,we develop a neural network-based acceleration model for surrounding vehicles and further incorporate a confidence-aware dynamic belief to improve the prediction accuracy.Extensive experiments were conducted to validate the performance of the acceleration prediction model based on naturalistic highway driving data.The efficiency and effectiveness of the framework with infused confidence beliefs were tested in both naturalistic and simulated highway scenarios.The proposed risk assessment framework is promising for real-world applications.展开更多
Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at th...Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.展开更多
The dynamic viscoelastic properties of asphalt AC-20 and its composites with Organic-Montmorillonite clay (OMMt) and SBS were modeled using the empirical Havriliak-Negami (HN) model, based on linear viscoelastic theor...The dynamic viscoelastic properties of asphalt AC-20 and its composites with Organic-Montmorillonite clay (OMMt) and SBS were modeled using the empirical Havriliak-Negami (HN) model, based on linear viscoelastic theory (LVE). The HN parameters, α, β, G0, G∞and τHN were determined by solving the HN equation across various temperatures and frequencies. The HN model successfully predicted the rheological behavior of the asphalt and its blends within the temperature range of 25˚C - 40˚C. However, deviations occurred between 40˚C - 75˚C, where the glass transition temperature Tg of the asphalt components and the SBS polymer are located, rendering the HN model ineffective for predicting the dynamic viscoelastic properties of composites containing OMMt under these conditions. Yet, the prediction error of the HN model dropped to 2.28% - 2.81% for asphalt and its mixtures at 100˚C, a temperature exceeding the Tg values of both polymer and asphalt, where the mixtures exhibited a liquid-like behavior. The exponent α and the relaxation time increased with temperature across all systems. Incorporating OMMt clay into the asphalt blends significantly enhanced the relaxation dynamics of the resulting composites.展开更多
In conventional absorption refrigeration systems(ARS),the heat from the condenser is usually rejected by the environment in place to be used in the system,so recuperating this is a good alternative to enhance the sys...In conventional absorption refrigeration systems(ARS),the heat from the condenser is usually rejected by the environment in place to be used in the system,so recuperating this is a good alternative to enhance the system’s performance.For instance,in this paper,an alternative ARS in which LiBr/Water is used as a refrigerant mixture,where part of condensing heat is recovered via the solution heat recovery generator absorption cycle(HR-ARS)was energy and exergy evaluated.The influence of generator,condenser and evaporator temperatures,as well as the efficiency of the solution heat exchanger on the coefficient of performance,exergy performance and exergy destroyed of the HR-ARS system,were analyzed and compared with the traditional ARS system at the same working conditions.The results showed an increase between 5.8%–6.3%on the COP and 3.7%–9.5%in the exergy efficiency when condenser/absorber temperature was reduced from 40℃ to 30℃.However,when the evaporation temperature rose from 5℃ to 15℃,the COP(coefficient of performance)increased by around 8%,although this could be increased by 2.3%–6.3%if the generator temperature decreases from 100℃ to 80℃.Moreover,the COP and exergetic performance for the HR-ARS is more significant at the lowest generator,condenser and evaporator temperatures,as well as at high efficiency in the solution heat exchanger,in comparison to ARS system.Furthermore,the COP and exergy performance for the HR-ARS system was improved by 2.57%to 3.11%and 0.22%to 0.7%,respectively,while the recovering condensation heat for generation is around 1.51%–3.76%lower than with the ARS.It also was found that for all ranges of evaporator and condenser temperatures,the COP for the HR-ARS system is around 3%higher than that obtained with the ARS at the three different generator temperatures here analyzed,while when the solution heat exchanger effectiveness was increased from 0.7–1.0,the total exergy destruction for the HR-ARS resulted be 3.24%–5.01%smaller than the ARS system.Finally,it can be concluded that the components with the most exergy destroyed in the systems(80%to 94%)are the generator and absorber.展开更多
文摘Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design.
文摘Liquefaction is one of the prominent factors leading to damage to soil and structures.In this study,the rela-tionship between liquefaction potential and soil parameters is determined by applying feature importance methods to Random Forest(RF),Logistic Regression(LR),Multilayer Perceptron(MLP),Support Vector Machine(SVM)and eXtreme Gradient Boosting(XGBoost)algorithms.Feature importance methods consist of permuta-tion and Shapley Additive exPlanations(SHAP)importances along with the used model’s built-in feature importance method if it exists.These suggested approaches incorporate an extensive dataset of geotechnical parameters,historical liquefaction events,and soil properties.The feature set comprises 18 parameters that are gathered from 161 field cases.Algorithms are used to determine the optimum performance feature set.Compared to other approaches,the study assesses how well these algorithms predict soil liquefaction potential.Early findings show that the algorithms perform well,demonstrating their capacity to identify non-linear connections and improve prediction accuracy.Among the feature set,σ,v(psf),MSF,CSRσ,v,FC%,Vs*,40f t(f ps)and N1,60,CS are the ones that have the highest deterministic power on the result.The study’s contribution is that,in the absence of extensive data for liquefaction assessment,the proposed method estimates the liquefaction potential using five parameters with promising accuracy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51991392 and 42293355).
文摘Despite extensive research on computational geomechanics and fluid dynamics,accurately simulating convection-diffusion(CD)processes in complex fractured systems remains a significant challenge.This study develops a 3D numerical framework for modelling CD processes in fractured geological media.The framework integrates Darcy's law and Fick's law,considering flux interactions between the matrix and fractures.The meshing strategy generates high-quality grids even in scenarios involving intersecting fractures.Then,a unified numerical scheme for solving the CD system is proposed.The novelties of this work include:(1)The proposed framework enables effective simulation of 3D fractured media,including more complex fractured vuggy media;(2)The numerical method precisely discretizes the CD terms in governing equations;(3)A Non-Orthogonal Correction(NOC)method,combined with an adaptive time integration scheme,is proposed for eliminating errors induced by skewed grids;and(4)The effects of fracture patterns and heterogeneity on flow are thoroughly analysed.The proposed method is validated through benchmark tests,demonstrating the superiority of the NOC method compared to classical methods.Further analysis reveals the evolution characteristics of pressure and concentration,offering insights into the effects of fracture patterns and heterogeneity on flow and diffusion processes.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)for funding this researchThis research used a high temperature confocal laser scanning microscope-VL2000DX-SVF17SP funded by Canada Foundation for Innovation John Evans Leaders Fund(CFI JELF,Project Number:32826),a PANalytical X’Pert diffraction instrument located at the Centre for crystal growth,Brockhouse Institute for Materials Research,and a scanning electron microscope-JEOL 6610 located at the Canadian Centre for Electron Microscopy at McMaster University.W.Mu would like to acknowledge Swedish Iron and Steel Research Office(Jernkonteret),STINT and SSF for supporting the time for international collaboration research regarding clean steel.
文摘Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects of temperature(i.e.,1500,1550,and 1600℃)and slag composition on the dissolution time of CA_(2)particles are investigated,along with the time dependency of the projection area of the particle during the dissolution process.It is found that the dissolution rate was enhanced by either an increase in temperature or a decrease in slag viscosity.Moreover,a higher ratio of CaO/Al_(2)O_(3)(C/A)leads to an increased dissolution rate of CA_(2)particle at 1600℃.Thermodynamic calculations suggested the dissolution product,i.e.,melilite,formed on the surface of the CA_(2)particle during dissolution in slag with a C/A ratio of 3.8 at 1550℃.Scanning electron microscopy equipped with energy dispersive X-ray spectrometry analysis of as-quenched samples confirmed the dissolution path of CA_(2)particles in slags with C/A ratios of 1.8 and 3.8 as well as the melilite formed on the surface of CA_(2)particle.The formation of this layer during the dissolution process was identified as a hindrance,impeding the dissolution of CA_(2)particle.A valuable reference for designing or/and choosing the composition of top slag for clean steel production is provided,especially using calcium treatment during the secondary refining process.
基金Project supported by the National Natural Science Foundation of China
文摘I.INTRODUCTION Since the 1970s, the study of stimulated emission of CdS and other Ⅱ--Ⅵ compound semiconductors has speeded up the development of the study of highly excited semiconductors. It was shown that the ex-el scattering induces the main recombination process that yields high gain above 100 K both experimentally and theoretically. The results obtained so far concern mainly the stimulated emission, and most of the efforts are devoted to the temperature dependence of emission spectra. Only a few works are concerning the dynamics of the luminescence due to scattering.
基金supported by the PAPIIT-UNAM project numbers IN-205823 and IA-107123DGV thanks to PNPC–CONACyT for her Ph.D.scholarship。
文摘This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75:25,80:20 and 85:15 wt.%.Supports were initially characterized by XRD,SEM and electrical conductivity(using vacuum and oxygen atmospheres),to determine the composition,microstructural and ionic-electronic conductivity properties.Later,supports were infiltrated with an eutectic carbonates mixture,producing the corresponding dense dual-phase membranes,in which CO_(2)permeation tests were conducted.Here,CO_(2)permeation experiments were performed from 900 to 700℃,in the presence and absence of oxygen(flowed in the sweep membrane side).Results showed that these composites possess high CO_(2)permeation properties,where the O_(2)addition significantly improves the ionic conduction on the sweep membrane side.Specifically,the GC80-LN20 composition presented the best results due to the following physicochemical characteristics:high electronic and ionic conductivity,appropriate porosity,interconnected porous channels,as well as thermal and chemical stabilities between the composite support and carbonate phases.
基金Project supported by Secretariat of Research and Postgraduate Studies National Polytechnic Institute (20221369 and 20231939)Consejo Nacional de Ciencia y Tecnologia CONACyT。
文摘The recovery of yttrium is proposed by applying a solid-liquid extraction process using di-2-ethyl hexylphosphoric acid(D2EHPA) as extracting agent.The extracting agents were supported on a macro porous polymeric resin XAD-7(solid phase).Yttrium ions extraction and discharge tests were performed,firstly from a synthetic aqueous solution of 100 mg/L Y(liquid phase) at 25℃ with stirring.The effects of pH of aqueous solutions bearing yttrium,volume fraction of extracting agents and the solid/liquid(S/L)ratio on the yttrium recovery were studied.The most favorable conditions for yttrium ions extraction are;20 vol% D_(2)EHPA functionalized resin,pH=1.5 and an S/L ratio of 10 mg/mL The discharge of yttrium ions was done under the same conditions of extraction stage,using a 2 mol/L [H_(2)SO_(4)] as stripping solution.Up to 80% yttrium is extracted,while 75% yttrium is recovered in the striping solution.In all experiments,the reaction equilibrium is reached after 20 min,and the kinetics for the extraction stage was determined as a second-order model.Also,experiments were carried out to discharge the yttriumloaded resins,and it has been determined that the best pH value to strip the Y ions is 1.5.Cyclic tests of extraction and discharge for yttrium ions show that the functionalized resin can work at least five cycles without decreasing its efficiency.Finally,the proposed process was tested in a real solution with Y ions fro m a waste fluorescent la mp powder leached in H_(2)SO_(4),demonstrating the ability to effectively recover yttrium,separating it from various metals from the studied residue.
基金supported by the proactive SAFEty systems and tools for a constantly UPgrading road environment(SAFE-UP)projectfunding from the European Union’s Horizon 2020 Research and Innovation Program(861570)。
文摘Risk assessment is a crucial component of collision warning and avoidance systems for intelligent vehicles.Reachability-based formal approaches have been developed to ensure driving safety to accurately detect potential vehicle collisions.However,they suffer from over-conservatism,potentially resulting in false–positive risk events in complicated real-world applications.In this paper,we combine two reachability analysis techniques,a backward reachable set(BRS)and a stochastic forward reachable set(FRS),and propose an integrated probabilistic collision–detection framework for highway driving.Within this framework,we can first use a BRS to formally check whether a two-vehicle interaction is safe;otherwise,a prediction-based stochastic FRS is employed to estimate the collision probability at each future time step.Thus,the framework can not only identify non-risky events with guaranteed safety but also provide accurate collision risk estimation in safety-critical events.To construct the stochastic FRS,we develop a neural network-based acceleration model for surrounding vehicles and further incorporate a confidence-aware dynamic belief to improve the prediction accuracy.Extensive experiments were conducted to validate the performance of the acceleration prediction model based on naturalistic highway driving data.The efficiency and effectiveness of the framework with infused confidence beliefs were tested in both naturalistic and simulated highway scenarios.The proposed risk assessment framework is promising for real-world applications.
文摘Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.
文摘The dynamic viscoelastic properties of asphalt AC-20 and its composites with Organic-Montmorillonite clay (OMMt) and SBS were modeled using the empirical Havriliak-Negami (HN) model, based on linear viscoelastic theory (LVE). The HN parameters, α, β, G0, G∞and τHN were determined by solving the HN equation across various temperatures and frequencies. The HN model successfully predicted the rheological behavior of the asphalt and its blends within the temperature range of 25˚C - 40˚C. However, deviations occurred between 40˚C - 75˚C, where the glass transition temperature Tg of the asphalt components and the SBS polymer are located, rendering the HN model ineffective for predicting the dynamic viscoelastic properties of composites containing OMMt under these conditions. Yet, the prediction error of the HN model dropped to 2.28% - 2.81% for asphalt and its mixtures at 100˚C, a temperature exceeding the Tg values of both polymer and asphalt, where the mixtures exhibited a liquid-like behavior. The exponent α and the relaxation time increased with temperature across all systems. Incorporating OMMt clay into the asphalt blends significantly enhanced the relaxation dynamics of the resulting composites.
文摘In conventional absorption refrigeration systems(ARS),the heat from the condenser is usually rejected by the environment in place to be used in the system,so recuperating this is a good alternative to enhance the system’s performance.For instance,in this paper,an alternative ARS in which LiBr/Water is used as a refrigerant mixture,where part of condensing heat is recovered via the solution heat recovery generator absorption cycle(HR-ARS)was energy and exergy evaluated.The influence of generator,condenser and evaporator temperatures,as well as the efficiency of the solution heat exchanger on the coefficient of performance,exergy performance and exergy destroyed of the HR-ARS system,were analyzed and compared with the traditional ARS system at the same working conditions.The results showed an increase between 5.8%–6.3%on the COP and 3.7%–9.5%in the exergy efficiency when condenser/absorber temperature was reduced from 40℃ to 30℃.However,when the evaporation temperature rose from 5℃ to 15℃,the COP(coefficient of performance)increased by around 8%,although this could be increased by 2.3%–6.3%if the generator temperature decreases from 100℃ to 80℃.Moreover,the COP and exergetic performance for the HR-ARS is more significant at the lowest generator,condenser and evaporator temperatures,as well as at high efficiency in the solution heat exchanger,in comparison to ARS system.Furthermore,the COP and exergy performance for the HR-ARS system was improved by 2.57%to 3.11%and 0.22%to 0.7%,respectively,while the recovering condensation heat for generation is around 1.51%–3.76%lower than with the ARS.It also was found that for all ranges of evaporator and condenser temperatures,the COP for the HR-ARS system is around 3%higher than that obtained with the ARS at the three different generator temperatures here analyzed,while when the solution heat exchanger effectiveness was increased from 0.7–1.0,the total exergy destruction for the HR-ARS resulted be 3.24%–5.01%smaller than the ARS system.Finally,it can be concluded that the components with the most exergy destroyed in the systems(80%to 94%)are the generator and absorber.